Numerical method for fluid-structure interaction in turbomachinery bladings

被引:0
|
作者
School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing 100191, China [1 ]
不详 [2 ]
机构
来源
Hangkong Dongli Xuebao | 2009年 / 7卷 / 1622-1626期
关键词
Structural dynamics - Aerodynamics - Computational fluid dynamics - Turbomachinery - Vibration analysis - NASA - Numerical methods - Navier Stokes equations - Aerodynamic stability - Aeroelasticity - Data transfer - Finite volume method - Damping;
D O I
暂无
中图分类号
学科分类号
摘要
A numerical simulation method for fluid-structure interaction (FSI) in turbomachinery bladings was presented to predict the aeroelastic stability of blades. The vibrational displacements of computational structural dynamics (CSD) nodes have been interpolated to computational fluid dynamics (CFD) grids at the blade surface using a data transfer method. In CFD analysis, the grid coordinates of the moveable region have been updated by multi-layer moving grid technique, and the finite volume method has been applied to calculate the Reynolds-averaged Navier-Stokes (RANS) equations closed by k-Ε turbulent model. For NASA Rotor 67, the total work done by the unsteady aerodynamic force in one oscillating period and the corresponding aerodynamic modal damping ratios of the first four modes of blade vibration at the design speed have been predicted numerically, and the aeroelastic stability of blades has been analyzed preliminarily. The study shows that the developed FSI procedure is feasible to predict the aeroelastic stability of blades.
引用
收藏
相关论文
共 50 条
  • [41] Numerical analysis of fluid-structure interaction vibration for plate
    Hu, Shi-Liang
    Lu, Chuan-Jing
    He, You-Sheng
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2013, 47 (10): : 1487 - 1493
  • [42] ON VERIFICATION OF NUMERICAL SOLUTION OF FLUID-STRUCTURE INTERACTION PROBLEMS
    Svacek, P.
    CONFERENCE TOPICAL PROBLEMS OF FLUID MECHANICS 2016, 2016, : 215 - 222
  • [43] Fluid-structure interaction by the spectral element method
    Bodard, N.
    Deville, M. O.
    JOURNAL OF SCIENTIFIC COMPUTING, 2006, 27 (1-3) : 123 - 136
  • [44] Efficient Numerical Modeling of Oscillatory Fluid-Structure Interaction
    Reichel, Erwin K.
    Heinisch, Martin
    Jakoby, Bernhard
    Voglhuber-Brunnmaier, Thomas
    2014 IEEE SENSORS, 2014,
  • [45] FLUID-STRUCTURE INTERACTION Fluid-Structure Interaction Issues in Aeronautical Engineering
    Jo, Jong Chull
    Giannopapa, Christina
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 4, 2012, : 421 - 421
  • [46] A GPU-ACCELERATED COMPRESSIBLE RANS SOLVER FOR FLUID-STRUCTURE INTERACTION SIMULATIONS IN TURBOMACHINERY
    Mangani, L.
    Casartelli, E.
    Romanelli, G.
    Fischer, Magnus
    Gadda, A.
    Mantegazza, P.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2016, VOL 7B, 2016,
  • [47] Fluid-structure interaction
    Ohayon, R.
    STRUCTURAL DYNAMICS - EURODYN 2005, VOLS 1-3, 2005, : 13 - 20
  • [48] FLUID-STRUCTURE INTERACTION Fluid Structure Interaction and Sloshing
    Brochard, D.
    Tomoyo, Taniguchi
    Ma, D. C.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 4, 2012, : 389 - +
  • [49] Fluid-Structure Interaction
    Ohayon, Roger
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2011, 2011, : 53 - 59
  • [50] FLUID-STRUCTURE INTERACTION
    BELYTSCHKO, T
    COMPUTERS & STRUCTURES, 1980, 12 (04) : 459 - 469