Study on application of multi-kernel learning relevance vector machines in fault diagnosis of power transformers

被引:0
|
作者
机构
[1] Zhu, Yongli
[2] Yin, Jinliang
来源
Zhu, Y. (yonglipw@heinfo.net) | 2013年 / Chinese Society for Electrical Engineering卷 / 33期
关键词
Power transformers;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine
    Hongshan ZHAO
    Yufeng GAO
    Huihai LIU
    Lang LI
    JournalofModernPowerSystemsandCleanEnergy, 2019, 7 (02) : 350 - 356
  • [32] Incremental support vector machine algorithm based on multi-kernel learning
    Li, Zhiyu
    Zhang, Junfeng
    Hu, Shousong
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2011, 22 (04) : 702 - 706
  • [33] Application of improved support vector machine model in fault diagnosis and prediction of power transformers
    Wang Y.
    Advanced Control for Applications: Engineering and Industrial Systems, 2024, 6 (04):
  • [34] Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement
    Chen, Siyu
    Gu, Chongshi
    Lin, Chaoning
    Zhang, Kang
    Zhu, Yantao
    ENGINEERING WITH COMPUTERS, 2021, 37 (03) : 1943 - 1959
  • [35] Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement
    Siyu Chen
    Chongshi Gu
    Chaoning Lin
    Kang Zhang
    Yantao Zhu
    Engineering with Computers, 2021, 37 : 1943 - 1959
  • [36] Fault diagnosis of power transformers using multi-class least square support vector machines classifiers with particle swarm optimisation
    Zheng, H. B.
    Liao, R. J.
    Grzybowski, S.
    Yang, L. J.
    IET ELECTRIC POWER APPLICATIONS, 2011, 5 (09) : 691 - 696
  • [37] Electronic system fault diagnosis with optimized multi-kernel SVM by improved CPSO
    Diagnoza uszkodzeń ukladu elektronicznego z wykorzystaniem wielojądrowej maszyny wektorów nośnych
    1600, Polish Academy of Sciences Branch Lublin (16):
  • [38] ELECTRONIC SYSTEM FAULT DIAGNOSIS WITH OPTIMIZED MULTI-KERNEL SVM BY IMPROVED CPSO
    Guo, Yang-Ming
    Wang, Xiang-Tao
    Liu, Chong
    Zheng, Ya-Fei
    Cai, Xiao-Bin
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2014, 16 (01): : 85 - 91
  • [39] A Transformer Fault Diagnosis Method Based on Sub-clustering Reduction and Multiclass Multi-kernel Support Vector Machine
    Li, Jieshan
    Zhu, Yonghu
    Xu, Yibin
    Guo, Chuangxin
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017, : 827 - 832
  • [40] Transformers fault diagnosis based on Support Vector Machines and dissolved gas analysis
    Wu, Haitao
    Jiang, Huilan
    Shan, Dapeng
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF THEORETICAL AND METHODOLOGICAL ISSUES, 2008, 5226 : 720 - +