Separation and utilization of lithium, magnesium, and boron resources from salt lakes through Ionic liquid extraction and CO2 mineralization

被引:1
|
作者
Li, Jia [1 ]
Zhang, Guoquan [1 ]
Luo, Mingzhi [1 ]
Li, Gaomiao [1 ]
He, Jun [2 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
[2] LB Sichuan Titanium Ind CO ltd, Mianzhu 618200, Peoples R China
基金
中国国家自然科学基金;
关键词
Salt lake brine; Extraction; Ionic Liquids; CO2; mineralisation; Separation; SELECTIVE EXTRACTION; BRINE;
D O I
10.1016/j.seppur.2024.130444
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Salt lakes are abundant in three crucial resources - lithium(Li), magnesium(Mg), and boron(B). The separation efficiency of these resources is low, the excessive use of acid and the environmental harm caused by the accumulation of magnesium source after Li+ extraction still exist. In this work, a new process of step-by-step extraction of B-Li and Mg mineralisation is proposed to separate the three resources. Boron was extracted using 2-ethyl-1,3-hexanediol (EHD) + kerosene, and it was found that the addition of FeCl3 could significantly improve the boron extraction rate(E). In the R(O:A) = 1:3, 40 %EHD + 60 %kerosene, adding 0.15 mol/L FeCl3, after three-stage countercurrent extraction, the E(B3+) reached 99 %, E(Fe3+), E(Li+) and E(Mg2+) less than 4 %. Tributyl Phosphate (TBP)-Ionic Liquids (ILs)-kerosene-FeCl3 system was used to extract Li+, the ILs and FeCl3 existed in the extraction process with a competitive behaviour. The extraction efficiency of lithium was improved by cationic [C4mim+] exchange reaction. Under the conditions of R(O:A) = 1:1, 5 %ILs + 65 %TBP + 30 % kerosene, and three-stage extraction, the E(Li+) was reached 91 %. (NH4)2CO3 was used to mineralise the magnesium resources. At a reaction temperature of 40 degrees C, the product was magnesium carbonate trihydrate (MgCO3 center dot 3H2O) with a smooth surface and rod-like structure, and the conversion rate reached 85 %. At 75 degrees C, the product was an irregular spheroidal basic magnesium carbonate(4MgCO3 center dot Mg(OH)2 center dot 5H2O) with a magnesium conversion of 91.7 %.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Recovery of Lithium Ions from Salt Lake Brine with a High Magnesium/Lithium Ratio Using Heteropolyacid Ionic Liquid
    Wang, Yong
    Liu, Haotian
    Fan, Jiahui
    Liu, Xueting
    Hu, Yafei
    Hu, Yulei
    Zhou, Zhiyong
    Ren, Zhongqi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (03) : 3062 - 3072
  • [42] Rapid Continuous Supercritical CO2 Extraction and Separation of Organic Compounds from Liquid Solutions
    Fujii, Tatsuya
    Matsuo, Yasuaki
    Kawasaki, Shin-ichiro
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (16) : 5717 - 5721
  • [43] Liquid CO2 droplet extraction from gases
    Theunissen, Ton
    Golombok, Mike
    Brouwers, J. J. H.
    Bansal, Gagan
    van Benthum, Rob
    ENERGY, 2011, 36 (05) : 2961 - 2967
  • [44] Recent Advances in Poly(Ionic Liquid)-Based Membranes for CO2 Separation
    Bernardo, Gabriel
    Gaspar, Hugo
    POLYMERS, 2023, 15 (03)
  • [45] Ionic Liquid Embedded in Polymeric Membrane for High Pressure CO2 Separation
    Mohshim, Dzeti Farhah
    Mukhtar, Hilmi
    Man, Zakaria
    PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 1423 - 1428
  • [46] Functional ionic liquid as phase separation trigger in biphasic absorption of CO2
    Chen, Meisi
    Chen, Weida
    Jiang, Bin
    Huang, Ying
    Lei, Tong
    Zhang, Feng
    Wu, Youting
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [47] Amine/Carboxylic Acid Ionic Liquid Composite Membranes for CO2 Separation
    Alcantara, Murilo Leite
    Oliveira, Gerlon de Almeida
    Liao, Luciano Morais
    Borges, Cristiano Piacsek
    Mattedi, Silvana
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (11) : 4405 - 4419
  • [48] Playing with ionic liquid mixtures to design engineered CO2 separation membranes
    Tome, Liliana C.
    Florindo, Catarina
    Freire, Carmen S. R.
    Rebelo, Luis Paulo N.
    Marrucho, Isabel M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (32) : 17172 - 17182
  • [49] Selective CO2 separation through physicochemical absorption by triazole-functionalized ionic liquid binary absorbents
    Sun, Xueqi
    Zeng, Shaojuan
    Li, Guilin
    Bai, Yinge
    Shang, Minghua
    Zhang, Jian
    Zhang, Xiangping
    AICHE JOURNAL, 2024, 70 (05)
  • [50] Separation of CO2/CH4 through alumina-supported geminal ionic liquid membranes
    Shahkaramipour, N.
    Adibi, M.
    Seifkordi, A. A.
    Fazli, Y.
    JOURNAL OF MEMBRANE SCIENCE, 2014, 455 : 229 - 235