Applications of the fractional calculus: On a discretization of fractional diffusion equation in one dimension

被引:0
|
作者
Kisela, Tomas [1 ]
机构
[1] Institute of Mathematics, Brno University of Technology, Brno, Czech Republic
关键词
All Open Access; Hybrid Gold;
D O I
10.26552/com.c.2010.1.5-11
中图分类号
学科分类号
摘要
17
引用
收藏
页码:5 / 11
相关论文
共 50 条
  • [31] Nonlinear singular perturbations of the fractional Schrodinger equation in dimension one
    Carlone, Raffaele
    Finco, Domenico
    Tentarelli, Lorenzo
    NONLINEARITY, 2019, 32 (08) : 3112 - 3143
  • [32] Numerical approaches to fractional calculus and fractional ordinary differential equation
    Li, Changpin
    Chen, An
    Ye, Junjie
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (09) : 3352 - 3368
  • [33] Fractional diffusion equation with new fractional operator
    Sene, Ndolane
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2921 - 2926
  • [34] Generalized fractional calculus with applications to the calculus of variations
    Odzijewicz, Tatiana
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3351 - 3366
  • [35] Generalities on finite element discretization for fractional pressure diffusion equation in the fractal continuum
    Sanchez-Chavez, H. D.
    Lopez-Ortiz, C. A.
    Flores-Cano, L.
    REVISTA MEXICANA DE FISICA, 2019, 65 (03) : 251 - 260
  • [36] On an accurate discretization of a variable-order fractional reaction-diffusion equation
    Hajipour, Mojtaba
    Jajarmi, Amin
    Baleanu, Dumitru
    Sun, HongGuang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 : 119 - 133
  • [37] On Fractional Whittaker Equation and Operational Calculus
    Rodrigues, M. M.
    Vieira, N.
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2013, 20 (01): : 127 - 146
  • [38] Growth Equation of the General Fractional Calculus
    Kochubei, Anatoly N.
    Kondratiev, Yuri
    MATHEMATICS, 2019, 7 (07)
  • [39] Some properties of the fractional equation of continuity and the fractional diffusion equation
    Fukunaga, Masataka
    Flow Dynamics, 2006, 832 : 534 - 537
  • [40] Applications of the Fractional Sturm-Liouville Difference Problem to the Fractional Diffusion Difference Equation
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    Poskrobko, Anna
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2023, 33 (03) : 349 - 359