Network traffic features for anomaly detection in specific industrial control system network

被引:0
|
作者
机构
[1] Mantere, Matti
[2] Sailio, Mirko
[3] Noponen, Sami
来源
Mantere, Matti (matti.mantere@vtt.fi) | 1600年 / MDPI AG卷 / 05期
关键词
Learning algorithms - Learning systems - Control systems - Feature extraction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Network Traffic Monitoring, Analysis and Anomaly Detection
    Wang, Wei
    Zhang, Xiangliang
    Shi, Wenchang
    Lian, Shiguo
    Feng, Dengguo
    IEEE NETWORK, 2011, 25 (03): : 6 - 7
  • [32] Unsupervised Anomaly Detection for Network Data Streams in Industrial Control Systems
    Liu, Limengwei
    Hu, Modi
    Kang, Chaoqun
    Li, Xiaoyong
    INFORMATION, 2020, 11 (02)
  • [33] Anomaly Detection of Hostile Traffic Based on Network Traffic Distributions
    Kang, Koohong
    INFORMATION NETWORKING: TOWARDS UBIQUITOUS NETWORKING AND SERVICES, 2008, 5200 : 781 - 790
  • [34] Unsupervised anomaly detection for network traffic using artificial immune network
    Yuanquan Shi
    Hong Shen
    Neural Computing and Applications, 2022, 34 : 13007 - 13027
  • [35] Network traffic anomaly detection method based on chaotic neural network
    Sheng, Shaojun
    Wang, Xin
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 77 : 567 - 579
  • [36] Network Traffic Anomaly Detection Based on Generative Adversarial Network and Transformer
    Wang, Zhurong
    Zhou, Jing
    Hei, Xinhong
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 228 - 235
  • [37] Unsupervised anomaly detection for network traffic using artificial immune network
    Shi, Yuanquan
    Shen, Hong
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (15): : 13007 - 13027
  • [38] The methods of network traffic statistical anomaly detection based on Network processor
    Yun, Li
    Ge, Renhua
    Li, Jinghua
    IITAW: 2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATIONS WORKSHOPS, 2009, : 54 - +
  • [39] Industrial Control Malicious Traffic Anomaly Detection System Based on Deep Autoencoder
    Wang, Weiping
    Wang, Chunyang
    Guo, Yongzhen
    Yuan, Manman
    Luo, Xiong
    Gao, Yang
    FRONTIERS IN ENERGY RESEARCH, 2021, 8 (08):
  • [40] Design and Implementation of an Anomaly Network Traffic Detection Model Integrating Temporal and Spatial Features
    Li, Ming
    Han, Dezhi
    Yin, Xinming
    Liu, Han
    Li, Dun
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021