Modal analysis of Euler-Bernoulli beam with multiple open cracks based on perturbation method

被引:0
|
作者
Guo, Zhi-Gang [1 ]
Sun, Zhi [2 ]
机构
[1] Department of Bridge Engineering, Tongji University, Shanghai 200092, China
[2] State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
来源
关键词
Delta functions - Equations of motion - Modal analysis - Perturbation techniques - Finite element method - Location - Natural frequencies;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1 / 6
相关论文
共 50 条
  • [41] Solvability of the clamped Euler-Bernoulli beam equation
    Baysal, Onur
    Hasanov, Alemdar
    APPLIED MATHEMATICS LETTERS, 2019, 93 : 85 - 90
  • [42] Matching Boundary Conditions for the Euler-Bernoulli Beam
    Feng, Yaoqi
    Wang, Xianming
    SHOCK AND VIBRATION, 2021, 2021
  • [43] Control of a viscoelastic translational Euler-Bernoulli beam
    Berkani, Amirouche
    Tatar, Nasser-eddine
    Khemmoudj, Ammar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (01) : 237 - 254
  • [44] PDE Boundary Control for Euler-Bernoulli Beam Using a Two Stage Perturbation Observer
    Paranjape, Aditya A.
    Guan, Jinyu
    Chung, Soon-Jo
    Krstic, Miroslav
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 4442 - 4448
  • [45] Stabilization of a viscoelastic rotating Euler-Bernoulli beam
    Berkani, Amirouche
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 2939 - 2960
  • [46] Boundary stabilization of a hybrid Euler-Bernoulli beam
    Gorain, GC
    Bose, SK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (04): : 411 - 416
  • [47] PARAMETER-ESTIMATION FOR THE EULER-BERNOULLI BEAM
    KUNISCH, K
    GRAIF, E
    MATEMATICA APLICADA E COMPUTACIONAL, 1985, 4 (02): : 95 - 124
  • [48] Observer for Euler-Bernoulli beam with hydraulic drive
    Egeland, O
    Kristiansen, E
    Nguyen, TD
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 4266 - 4267
  • [49] Vibration of the Euler-Bernoulli beam with allowance for dampings
    Herrmann, Leopold
    WORLD CONGRESS ON ENGINEERING 2008, VOLS I-II, 2008, : 901 - 904
  • [50] ON THE SCATTERING OF WAVES IN A NONUNIFORM EULER-BERNOULLI BEAM
    GLADWELL, GML
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1991, 205 (01) : 31 - 34