Analytical approximate solutions of a nonlinear singular oscillator

被引:0
|
作者
Department of Mechanics and Engineering Science, School of Mathematics, Jilin University, Changchun 130012, China [1 ]
机构
来源
J Vib Shock | 2009年 / 6卷 / 104-106期
关键词
Harmonic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Exact and approximate solutions for the anti-symmetric quadratic truly nonlinear oscillator
    Belendez, A.
    Arribas, E.
    Pascual, C.
    Belendez, T.
    Alvarez, M. L.
    Hernandez, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 246 : 355 - 364
  • [42] Analytical approximate solutions for a general nonlinear resistor-nonlinear capacitor circuit model
    Fatoorehchi, Hooman
    Abolghasemi, Hossein
    Zarghami, Reza
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (19) : 6021 - 6031
  • [43] Approximate and Exact Solutions to the Singular Nonlinear Heat Equation with a Common Type of Nonlinearity
    Kazakov, A. L.
    Spevak, L. F.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2020, 34 : 18 - 34
  • [44] Determination of the amplitude-frequency for strongly nonlinear oscillator by two approximate analytical techniques
    Ayazi, Amir
    Khah, Hadi Ebrahimi
    JOURNAL OF THEORETICAL AND APPLIED PHYSICS, 2013, 7 (01)
  • [45] Approximate analytical solutions for the nonlinear free vibrations of composite beams in buckling
    Emam, Samir A.
    COMPOSITE STRUCTURES, 2013, 100 : 186 - 194
  • [46] A new method for approximate analytical solutions to nonlinear oscillations of nonnatural systems
    Wu, BS
    Lim, CW
    He, LH
    NONLINEAR DYNAMICS, 2003, 32 (01) : 1 - 13
  • [47] Approximate Analytical Solutions to Nonlinear Oscillations of Horizontally Supported Jeffcott Rotor
    Marinca, Vasile
    Herisanu, Nicolae
    ENERGIES, 2022, 15 (03)
  • [48] Analytical Approximate Solutions for a General Class of Nonlinear Delay Differential Equations
    Caruntu, Bogdan
    Bota, Constantin
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [49] An analytical technique to find approximate solutions of nonlinear damped oscillatory systems
    Alam, M. Shamsul
    Roy, Kamalesh Chandra
    Rahman, M. Saifur
    Hossain, Md Mossaraf
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (05): : 899 - 916
  • [50] Approximate analytical solutions of the nonlinear reaction-diffusion-convection problems
    Shidfar, A.
    Babaei, A.
    Molabahrami, A.
    Alinejadmofrad, M.
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) : 261 - 268