Analytical approximate solutions of a nonlinear singular oscillator

被引:0
|
作者
Department of Mechanics and Engineering Science, School of Mathematics, Jilin University, Changchun 130012, China [1 ]
机构
来源
J Vib Shock | 2009年 / 6卷 / 104-106期
关键词
Harmonic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Analytical approximate solutions for the generalized nonlinear oscillator
    Younesian, D.
    Askari, H.
    Saadatnia, Z.
    KalamiYazdi, M.
    APPLICABLE ANALYSIS, 2012, 91 (05) : 965 - 977
  • [2] CONSTRUCTION OF APPROXIMATE ANALYTICAL SOLUTIONS TO A NEW CLASS OF NONLINEAR OSCILLATOR EQUATIONS
    YUSTE, SB
    BEJARANO, JD
    JOURNAL OF SOUND AND VIBRATION, 1986, 110 (02) : 347 - 350
  • [3] On the boundedness of solutions to a nonlinear singular oscillator
    Anna Capietto
    Walter Dambrosio
    Bin Liu
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60
  • [4] On the boundedness of solutions to a nonlinear singular oscillator
    Capietto, Anna
    Dambrosio, Walter
    Liu, Bin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (06): : 1007 - 1034
  • [5] Approximate solutions for the nonlinear duffing oscillator with an external force
    Kirinin, Jutamas
    Mahithithummath, Kanokwan
    Kongsawasdi, Narisara
    Kasemsuwan, Jaipong
    7TH INTERNATIONAL CONFERENCE ON APPLIED PHYSICS AND MATHEMATICS (ICAPM 2017), 2017, 814
  • [6] Approximate analytical solutions of a nonlinear diffusion equation
    R. Sh. Malkovich
    Technical Physics Letters, 2006, 32 : 884 - 885
  • [7] Approximate analytical solutions of a nonlinear diffusion equation
    Malkovich, R. Sh.
    TECHNICAL PHYSICS LETTERS, 2006, 32 (10) : 884 - 885
  • [8] Analytical Solutions for Autonomous Conservative Nonlinear Oscillator
    Yazdi, Mohammad Kalami
    Khan, Yasir
    Madani, M.
    Askari, H.
    Saadatnia, Z.
    Yildirim, Ahmet
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (11) : 979 - 984
  • [9] Improved analytical approximate solutions of the Duffing-harmonic oscillator
    Li, Pengsong
    Wu, Baisheng
    Zhendong yu Chongji/Journal of Vibration and Shock, 2004, 23 (03): : 113 - 116
  • [10] ITERATION PROCEDURE FOR DETERMINING APPROXIMATE SOLUTIONS TO NONLINEAR OSCILLATOR EQUATIONS
    MICKENS, RE
    JOURNAL OF SOUND AND VIBRATION, 1987, 116 (01) : 185 - 187