Global dynamics of a generalized arbitrary order Van der Pol-Duffing Oscillator☆

被引:0
|
作者
Zhou, Jueliang [2 ]
Zou, Lan [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
关键词
Bifurcation diagram; Phase portrait; Limit cycle; Heteroclinic loop; SYSTEM;
D O I
10.1016/j.cnsns.2024.108445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global bifurcation diagram and corresponding global phase portraits in the Poincar & eacute; disc for a generalized van der Pol-Duffing oscillator, which has four nonlinear terms with arbitrary orders. This nonlinear oscillator possesses more diverse and complicated dynamical behaviours, including the heteroclinic bifurcation, generalized Hopf bifurcation and pitchfork bifurcation. Moreover, theoretical results are exhibited via numerical simulations.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Stability analysis for periodic solutions of the Van der Pol-Duffing forced oscillator
    Cui, Jifeng
    Liang, Jiaming
    Lin, Zhiliang
    PHYSICA SCRIPTA, 2016, 91 (01)
  • [42] On Coupled Delayed Van der Pol-Duffing Oscillators
    Pandey, Ankan
    Mitra, Mainak
    Ghose-Choudhury, A.
    Guha, Partha
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2020, 9 (04) : 567 - 574
  • [43] Hybrid rayleigh-van der pol-duffing oscillator: Stability analysis and controller
    He, Chun-Hui
    Tian, Dan
    Moatimid, Galal M.
    Salman, Hala F.
    Zekry, Marwa H.
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (01) : 244 - 268
  • [44] A NONSMOOTH VAN DER POL-DUFFING OSCILLATOR (II): THE SUM OF INDICES OF EQUILIBRIA IS 1
    Wang, Zhaoxia
    Chen, Hebai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1549 - 1589
  • [45] Adaptive backstepping control and synchronization of a modified and chaotic Van der Pol-Duffing oscillator
    Vincent U.E.
    Odunaike R.K.
    Laoye J.A.
    Gbindinninuola A.A.
    Journal of Control Theory and Applications, 2011, 9 (2): : 273 - 277
  • [46] Independent Period-2 Motions to Chaos in a van der Pol-Duffing Oscillator
    Xu, Yeyin
    Luo, Albert C. J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (15):
  • [47] Outcomes of the NIPPF Controller Linked to a Hybrid Rayleigh - Van der Pol-Duffing Oscillator
    Amer, Y. A.
    El-Sayed, A. T.
    Abd El-Salam, M. N.
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2020, 22 (03): : 33 - 41
  • [48] Horseshoe in a modified Van der Pol-Duffing circuit
    Fan, Qing-ju
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) : 436 - 440
  • [49] Difference resonances in a controlled van der Pol-Duffing oscillator involving time delay
    Ji, J. C.
    Zhang, N.
    Gao, Wei
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 975 - 980
  • [50] New Van der Pol-Duffing Jerk Fractional Differential Oscillator of Sequential Type
    Abdelnebi, Amira
    Dahmani, Zoubir
    MATHEMATICS, 2022, 10 (19)