Fast wave-front reconstruction and stitching for high definition Hartmann wave-front sensor

被引:1
|
作者
Yan, Hong [1 ]
Luo, Zhongxiang [1 ]
Ye, Yidong [1 ]
Xiang, Rujian [1 ]
Wang, Feng [1 ]
He, Li [1 ]
机构
[1] Institute of Applied Electronics, CAEP, P. O. Box 919-1012, Mianyang 621900, China
来源
Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams | 2012年 / 24卷 / 06期
关键词
Discrete Fourier transforms - Wavefronts;
D O I
10.3788/HPLPB20122406.1335
中图分类号
学科分类号
摘要
A physical model for high definition Hartmann wave-front sensor is build up, and the feasibility of using Hudgin model instead of Fried model in high definition Hartmann wave-front sensors is proved. The boundary problem caused by unknown sub-aperture slope is analyzed, and the corresponding edge processing method is introduced. The process of wave-front reconstruction based on discrete Fourier transform is numerically simulated, and the lossless reconstruction is achieved. In practical applications, the input wave-front may be discontinuous at the edge of the obscured part. Thus a wave-front stitching method using least square solution is proposed. The main factors which slow down the speed of reconstruction are studied, and the way to improve the reconstruction performance is proposed.
引用
收藏
页码:1335 / 1338
相关论文
共 50 条
  • [41] Validity of wave-front reconstruction and propagation of ultrabroadband pulses measured with a Hartmann-Shack sensor
    Hauri, CP
    Biegert, J
    Keller, U
    Schaefer, B
    Mann, K
    Marowski, G
    OPTICS LETTERS, 2005, 30 (12) : 1563 - 1565
  • [42] Fast scanning peripheral wave-front sensor for the human eye
    Jaeken, Bart
    Lundstrom, Linda
    Artal, Pablo
    OPTICS EXPRESS, 2011, 19 (08): : 7903 - 7913
  • [43] Wave-front sensing from defocused images by use of wave-front slopes
    van Dam, MA
    Lane, RG
    APPLIED OPTICS, 2002, 41 (26) : 5497 - 5502
  • [44] GPU Acceleration in Wave-Front Sensorless Adaptive Wave-Front Correction System
    Ke Xizheng
    Zhang Yunfeng
    Zhang Ying
    Lei Sichen
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (07)
  • [45] Wave-front sensing from defocused images by use of wave-front slopes
    Van Dam, Marcos A.
    Lane, Richard G.
    Applied Optics, 2002, 41 (26): : 5497 - 5502
  • [46] Generalized wave-front reconstruction algorithm applied in a Shack-Hartmann test
    Zou, WY
    Zhang, ZC
    APPLIED OPTICS, 2000, 39 (02) : 250 - 268
  • [47] Quadratic cost functional for wave-front reconstruction
    Legarda-Sáenz, Ricardo
    Rivera, Mariano
    Rodríguez-Vera, Ramón
    Applied Optics, 2002, 41 (08): : 1515 - 1521
  • [48] Quadratic cost functional for wave-front reconstruction
    Legarda-Sáenz, R
    Rivera, M
    Rodríguez-Vera, R
    APPLIED OPTICS, 2002, 41 (08) : 1515 - 1521
  • [49] Deconvolving solar images using a Shack-Hartmann wave-front sensor
    Rimmele, TR
    Radick, RR
    ADAPTIVE OPTICAL SYSTEM TECHNOLOGIES, PARTS 1 AND 2, 1998, 3353 : 1014 - 1021
  • [50] CHOUGH: spatially filtered Shack-Hartmann wave-front sensor for HOAO
    Holck, Daniel
    Bharmal, Nazim Ali
    Dubbeldam, Cornelis M.
    Myers, Richard M.
    ADAPTIVE OPTICS SYSTEMS V, 2016, 9909