Some multiple chromatic numbers of Kneser graphs

被引:0
|
作者
Holroyd, Fred [1 ]
Yannakopoulos, Andonis [2 ]
机构
[1] Department of Pure Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
[2] 8 Ardley Close, Dunstable, Bedfordshire LU6 3TA, United Kingdom
关键词
Mathematical models - Number theory - Numerical methods - Set theory;
D O I
暂无
中图分类号
学科分类号
摘要
The Kneser graph K(m, n) (when m > 2n) has the n-subsets of an m-set as its vertices, two vertices being adjacent in K(m, n) whenever they are disjoint sets. The kth chromatic number of any graph G (denoted by ×k(G) ) is the least integer t such that the vertices can be assigned k-subsets of {1, 2, ..., t) with adjacent vertices receiving disjoint k-sets. S. Stahl has conjectured that, if k = qn - r where q ≥ 1 and 0 &le r &le n, then ×k-(K(m, n)) = qm - 2r. This expression is easily verified when r = 0; Stahl has also established its validity for q = 1, for m = 2n + 1 and for n = 2, 3. We show here that the expression is also valid for all q ≥ 2 in the following further classes of cases: (i) 2n + 1 &lem&len(2+r-1) (0&le r 1); (ii) 4 &le n &le 6 and 1 &le &le 2 (all m); (iii) 7 &le n &le 11 and r = 1 (all m); (iv) (n, r, m) = (7, 2, 18), (12, 1, 3 7), (12, 1, 38) or ( 13, 1, 40).
引用
收藏
页码:23 / 32
相关论文
共 50 条
  • [31] On the chromatic number of q-Kneser graphs
    A. Blokhuis
    A. E. Brouwer
    T. Szőnyi
    Designs, Codes and Cryptography, 2012, 65 : 187 - 197
  • [32] COVERING RADIUS AND THE CHROMATIC NUMBER OF KNESER GRAPHS
    CALDERBANK, AR
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 54 (01) : 129 - 131
  • [33] Total dominator chromatic number of Kneser graphs
    Jalilolghadr, Parvin
    Behtoei, Ali
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 52 - 56
  • [34] On the chromatic number of q-Kneser graphs
    Blokhuis, A.
    Brouwer, A. E.
    Szonyi, T.
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 65 (03) : 187 - 197
  • [35] On the b-chromatic number of Kneser graphs
    Hajiabolhassan, Hossein
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (03) : 232 - 234
  • [36] Chromatic Numbers of Suborbital Graphs for Some Hecke Groups
    Khangtragool, Woratham
    Chaichana, Khuanchanok
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (02): : 725 - 738
  • [37] Independence numbers and chromatic numbers of random subgraphs in some sequences of graphs
    Bogolyubskii, L. I.
    Gusev, A. S.
    Pyaderkin, M. M.
    Raigorodskii, A. M.
    DOKLADY MATHEMATICS, 2014, 90 (01) : 462 - 465
  • [38] The Local Antimagic Chromatic Numbers of Some Join Graphs
    Yang, Xue
    Bian, Hong
    Yu, Haizheng
    Liu, Dandan
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (04)
  • [39] Independence numbers and chromatic numbers of random subgraphs in some sequences of graphs
    L. I. Bogolyubskii
    A. S. Gusev
    M. M. Pyaderkin
    A. M. Raigorodskii
    Doklady Mathematics, 2014, 90 : 462 - 465
  • [40] Independence numbers and chromatic numbers of the random subgraphs of some distance graphs
    Bogolubsky, L. I.
    Gusev, A. S.
    Pyaderkin, M. M.
    Raigorodskii, A. M.
    SBORNIK MATHEMATICS, 2015, 206 (10) : 1340 - 1374