Trace explosive detection using photothermal deflection spectroscopy

被引:0
|
作者
Krause, Adam R. [1 ,2 ]
Van Neste, Charles [1 ,2 ]
Senesac, Larry [1 ,2 ]
Thundat, Thomas [1 ,2 ]
Finot, Eric [3 ]
机构
[1] Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
[2] University of Tennessee, Knoxville, TN 37996, United States
[3] Institut CARNOT de Bourgogne, Nanosciences-Optique Submicronique, BP 47870, F-21078 Dijon, France
来源
Journal of Applied Physics | 2008年 / 103卷 / 09期
关键词
Satisfying the conditions of high sensitivity and high selectivity using portable sensors that are also reversible is a challenge. Miniature sensors such as microcantilevers offer high sensitivity but suffer from poor selectivity due to the lack of sufficiently selective receptors. Although many of the mass deployable spectroscopic techniques provide high selectivity; they do not have high sensitivity. Here; we show that this challenge can be overcome by combining photothermal spectroscopy on a bimaterial microcantilever with the mass induced change in the cantilever's resonance frequency. Detection using adsorption-induced resonant frequency shift together with photothermal deflection spectroscopy shows extremely high selectivity with a subnanogram limit of detection for vapor phase adsorbed explosives; such as pentaerythritol tetranitrate (PETN); cyclotrimethylene trinitramine (RDX); and trinitrotoluene (TNT). © 2008 American Institute of Physics;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [31] PHOTOACOUSTIC AND PHOTOTHERMAL DEFLECTION SPECTROSCOPY OF SEMICONDUCTORS
    AMATO, G
    BENEDETTO, G
    BOARINO, L
    MARINGELLI, M
    SPAGNOLO, R
    IEE PROCEEDINGS-A-SCIENCE MEASUREMENT AND TECHNOLOGY, 1992, 139 (04): : 161 - 168
  • [32] Photothermal deflection spectroscopy of chalcogenide glasses
    Tanaka, K
    Gotoh, T
    Yoshida, N
    Nonomura, S
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (01) : 125 - 128
  • [33] Terahertz time-domain spectroscopy for explosive trace detection
    Kong, Seong G.
    Wu, Dong H.
    2006 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR HOMELAND SECURITY AND PERSONAL SAFETY, 2006, : 47 - +
  • [34] Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces
    Kendziora, Christopher A.
    Furstenberg, Robert
    Papantonakis, Michael
    Viet Nguyen
    Byers, Jeff
    McGill, R. Andrew
    APPLIED OPTICS, 2015, 54 (31) : F129 - F138
  • [35] TRACE GAS-DETECTION BY LASER INTRACAVITY PHOTOTHERMAL SPECTROSCOPY
    FUNG, KH
    LIN, HB
    APPLIED OPTICS, 1986, 25 (05): : 749 - 752
  • [36] SPECIES-SELECTIVE DETECTION IN GAS-CHROMATOGRAPHY BY PHOTOTHERMAL DEFLECTION SPECTROSCOPY
    NICKOLAISEN, SL
    BIALKOWSKI, SE
    JOURNAL OF CHROMATOGRAPHY, 1986, 366 : 127 - 133
  • [37] THE LIMIT OF DETECTION IN TRANSVERSAL PHOTOTHERMAL DEFLECTION SPECTROSCOPY WITH LIGHT-SCATTERING SAMPLES
    KHUEN, QE
    FAUBEL, W
    ACHE, HJ
    FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1994, 348 (8-9): : 533 - 535
  • [38] A COMPARISON OF PHOTOTHERMAL DEFLECTION AND THERMAL LENSING SPECTROSCOPY FOR LIQUID-CHROMATOGRAPHIC DETECTION
    YANG, Y
    HO, TV
    APPLIED SPECTROSCOPY, 1987, 41 (04) : 583 - 585
  • [39] Absolute absorption measurements in polymer films using photothermal deflection spectroscopy
    Wu, LM
    Knoesen, A
    ORGANIC PHOTOREFRACTIVES, PHOTORECEPTORS, WAVEGUIDES, AND FIBERS, 1999, 3799 : 308 - 311
  • [40] Measurement of Speed Distribution of Kerosene Flame by Using Photothermal Deflection Spectroscopy
    Wang Nan
    Xuan Hong-wen
    Li De-hua
    Nie Yu-xin
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40 (11) : 3353 - 3357