Fabrication of hollow glass microspheres for inertial confinement fusion targets by depolymerizable mandrel method

被引:0
|
作者
Xu, Wei [1 ,2 ]
Wang, Tao [1 ]
He, Zhibing [1 ]
Wu, Zhangwen [2 ]
机构
[1] Research Center of Laser Fusion, CAEP, Mianyang, China
[2] Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China
关键词
Chemical bonds - Microspheres - Sintering - Silicon compounds - Fabrication - Inertial confinement fusion - Glass - Glow discharges - Silicon;
D O I
10.11884/HPLPB201527.062008
中图分类号
学科分类号
摘要
A preparation method of hollow glass microsphere (HGM) is investigated, which adopts glow discharge polymerization technology and uses tetramethyl silane (TMS) as the dopant gas, in order to control the diameter and thickness of hollow glass microspheres for inertial confinement fusion targets. The results show that 5% silicon in Si-GDP shells is a compromised concentration for fabricating HGM whose diameter is 400-600 μm and thickness is 5-15 μm. We can successfully control the shrinkage of the diameter and wall thickness at about 38%. The carbon concentration of the samples decreases significantly and it mainly exists in the form of C-Si bonding, while the silicon concentration increases significantly and it mainly exists in the form of Si-O bonding after the sintering step. The residual pressure reaches 72.95% in the shells which filled 1.23 MPa deuterium after 96 h. ©, 2015, Editorial Office of High Power Laser and Particle Beams. All right reserved.
引用
收藏
相关论文
共 50 条
  • [31] Fast ignition of inertial confinement fusion targets
    S. Yu. Gus’kov
    Plasma Physics Reports, 2013, 39 : 1 - 50
  • [32] TARGET FABRICATION FOR INERTIAL CONFINEMENT FUSION RESEARCH
    SOLOMON, DE
    HENDERSON, TM
    NOLEN, RL
    RENSEL, WB
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (04) : 545 - 545
  • [33] HOLLOW FOAM MICROSHELLS FOR LIQUID-LAYERED CRYOGENIC INERTIAL CONFINEMENT FUSION-TARGETS
    SCHROENCAREY, D
    OVERTURF, GE
    REIBOLD, R
    BUCKLEY, SR
    LETTS, SA
    COOK, R
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1995, 13 (05): : 2564 - 2568
  • [34] Effect of polymer molecular structure on the quality of thin-walled hollow microspheres for inertial confinement fusion
    Xu, Wenting
    Gu, Qianqian
    Zhu, Fanghua
    Chen, Qiang
    Liu, Yiyang
    Li, Jie
    Liu, Meifang
    Yi, Yong
    POLYMER ENGINEERING AND SCIENCE, 2023, 63 (02): : 489 - 498
  • [35] BURN PERFORMANCE OF INERTIAL CONFINEMENT FUSION-TARGETS
    HARRIS, DB
    MILEY, GH
    NUCLEAR FUSION, 1988, 28 (01) : 25 - 42
  • [36] Ignition energy scaling of inertial confinement fusion targets
    Basko, MM
    Johner, J
    NUCLEAR FUSION, 1998, 38 (12) : 1779 - 1788
  • [37] WHY CRYOGENIC INERTIAL CONFINEMENT FUSION-TARGETS
    LARSEN, JT
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (03): : 1150 - 1156
  • [38] Ion Implantation Doping of Inertial Confinement Fusion Targets
    Shin, S. J.
    Lee, J. R. I.
    van Buuren, T.
    Chen, K. C.
    Moreno, K. A.
    Huang, H.
    Hoover, D. E.
    Nikroo, A.
    Hamza, A. V.
    Kucheyev, S. O.
    FUSION SCIENCE AND TECHNOLOGY, 2018, 73 (03) : 467 - 473
  • [39] NEUTRONIC EFFECTS IN INERTIAL CONFINEMENT FUSION-TARGETS
    MARTINEZVAL, JM
    FUSION TECHNOLOGY, 1990, 17 (03): : 476 - 483
  • [40] MATERIALS PROBLEMS WITH INERTIAL CONFINEMENT FUSION-TARGETS
    FARNUM, EH
    FRIES, RJ
    BAREFIELD, JE
    JOURNAL OF NUCLEAR MATERIALS, 1979, 85-6 (DEC) : 99 - 102