Selective lithium recovery from spent NCM type Li-ion battery materials by powder electrolysis

被引:0
|
作者
Zhu, Guohui [1 ,2 ]
Yang, Qian [1 ,2 ]
Guo, Xueyi [1 ,2 ]
Yu, Dawei [1 ,2 ]
Mitrasinovic, Aleksandar M. [3 ]
Tian, Qinghua [1 ,2 ]
Feng, Hao [1 ,4 ]
Zhang, Kun [5 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Natl & Reg Joint Engn Res Ctr Nonferrous Met Resou, Changsha 410083, Peoples R China
[3] Serbian Acad Arts & Sci, Inst Tech Sci, Belgrade 11000, Serbia
[4] Hubei Green Tungsten Co Ltd, Jingmen 448124, Hubei, Peoples R China
[5] Natl WEEE Recycling Engn Res Ctr, Jingmen 448124, Hubei, Peoples R China
来源
基金
湖南省自然科学基金;
关键词
Selective lithium recovery; Electrochemical dissolution; Spent lithium-ion batteries; Electrolysis; CATHODE MATERIAL; VALUABLE METALS; LINI1/3CO1/3MN1/3O2; TRANSPORTATION; DEGRADATION; PERFORMANCE; EXTRACTION; GENERATION; MANGANESE; COBALT;
D O I
10.1016/j.jece.2024.115173
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents an eco-friendly electrochemical method for selectively recovering lithium from spent NCM (LiNi1-x-yCoxMnyO2) materials via powder electrolysis. Traditional recycling methods often generate hazardous gases and require high temperatures or excess chemical reagents. Using a custom-designed electrolytic cell and a porous anode frame in which the NCM powders were mounted, this innovative method ensures continuous contact between the electrode powder and the anode within an optimized pH of the electrolyte, thereby enhancing lithium extraction efficiency while minimizing the co-leaching of other metals. By adjusting the initial pH of the electrolyte and leveraging localized acidic and alkaline conditions created during electrolysis, high lithium extraction efficiency was achieved. Experimental results show that at an initial electrolyte pH of 2 and a temperature of 85 degrees C, the leaching efficiency of Li reached 94.62 wt%, with minimal dissolution of Ni, Co, and Mn (i.e., 1.80 wt%, 0.52 wt%, and 0.13 wt%, respectively). This method improves the efficiency of lithium recovery and reduces environmental impact by eliminating hazardous gas emissions and minimizing the use of chemical reagents.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The Recovery of Lithium Cobalt Oxides from Spent Li-ion Batteries and Its Electrochemical Performances
    Cheng Yan-ping
    Li Yang
    Jiang Shi
    Xie Hua-qing
    2016 IEEE INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2016, : 204 - 208
  • [22] Lithium recovery from spent Li-ion batteries using coconut shell activated carbon
    Purnomo, Chandra Wahyu
    Kesuma, Endhy Putra
    Perdana, Indra
    Aziz, Muhammad
    WASTE MANAGEMENT, 2018, 79 : 454 - 461
  • [23] Comprehensive recovery of NCM cathode materials for spent lithium-ion batteries by microfluidic device
    Zhou, Yiwei
    Chen, Zhuo
    Chen, An
    Zhang, Jingwei
    Wu, Xingjiang
    Xu, Jianhong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 294
  • [24] From Electrodes to Electrodes: Building High-Performance Li-Ion Capacitors and Batteries from Spent Lithium-Ion Battery Carbonaceous Materials
    Aravindan, Vanchiappan
    Jayaraman, Sundaramurthy
    Tedjar, Farouk
    Madhavi, Srinivasan
    CHEMELECTROCHEM, 2019, 6 (05) : 1407 - 1412
  • [25] Comprehensive recovery of NCM cathode materials for spent lithium-ion batteries by microfluidic device
    Zhou, Yiwei
    Chen, Zhuo
    Chen, An
    Zhang, Jingwei
    Wu, Xingjiang
    Xu, Jianhong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 294
  • [26] Adsorption of Li by a lithium ion-sieve using a buffer system and application for the recovery of Li from a spent lithium-ion battery
    Liwen Ma
    Xiaoli Xi
    Kaifeng Wang
    Linyan Zhao
    Research on Chemical Intermediates, 2018, 44 : 6721 - 6739
  • [27] Adsorption of Li by a lithium ion-sieve using a buffer system and application for the recovery of Li from a spent lithium-ion battery
    Ma, Liwen
    Xi, Xiaoli
    Wang, Kaifeng
    Zhao, Linyan
    RESEARCH ON CHEMICAL INTERMEDIATES, 2018, 44 (11) : 6721 - 6739
  • [28] Effect of Na from the leachate of spent Li-ion batteries on the properties of resynthesized Li-ion battery cathodes
    Beak, Mincheol
    Park, Sanghyuk
    Kim, Sangjun
    Park, Jangho
    Jeong, Seongdeock
    Thirumalraj, Balamurugan
    Jeong, Goojin
    Kim, Taehyeon
    Kwon, Kyungjung
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 873
  • [29] Selective recovery of cobalt from the cathode materials of NMC type Li-ion battery by ultrasound-assisted acid leaching and microemulsion extraction
    Wang, Wen-Yu
    Yen, Clive H.
    Hsu, Jeng-Kai
    SEPARATION SCIENCE AND TECHNOLOGY, 2020, 55 (16) : 3028 - 3035
  • [30] A study of the separation of cobalt from spent Li-ion battery residues
    Dorella, Germano
    Mansur, Marcelo Borges
    JOURNAL OF POWER SOURCES, 2007, 170 (01) : 210 - 215