Adaptive Feature Extraction Using Sparrow Search Algorithm-Variational Mode Decomposition for Low-Speed Bearing Fault Diagnosis

被引:1
|
作者
Wang, Bing [1 ]
Tang, Haihong [1 ,2 ,3 ]
Zu, Xiaojia [1 ]
Chen, Peng [2 ,3 ]
机构
[1] Zhejiang Ocean Univ, Sch Marine Engn Equipment, Zhoushan 316022, Peoples R China
[2] Mie Univ, Grad Sch, Tus, Mie 5148507, Japan
[3] Mie Univ, Fac Bioresources, Tus, Mie 5148507, Japan
关键词
fault diagnosis; VMD; sparrow search algorithm; kurtosis criterion; signal analysis; low-speed bearing;
D O I
10.3390/s24216801
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To address the challenge of extracting effective fault features at low speeds, where fault information is weak and heavily influenced by environmental noise, a parameter-adaptive variational mode decomposition (VMD) method is proposed. This method aims to overcome the limitations of traditional VMD, which relies on manually set parameters. The sparrow search algorithm is used to calculate the fitness function based on mean envelope entropy, enabling the adaptive determination of the number of mode decompositions and the penalty factor in VMD. Afterward, the optimised parameters are used to enhance traditional VMD, enabling the decomposition of the raw signal to obtain intrinsic mode function components. The kurtosis criterion is then used to select relevant intrinsic mode functions for signal reconstruction. Finally, envelope analysis is applied to the reconstructed signal, and the results reveal the relationship between fault characteristic frequencies and their harmonics. The experimental results demonstrate that compared with other advanced methods, the proposed approach effectively reduces noise interference and extracts fault features for diagnosing low-speed bearing faults.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] An optimized Laplacian of Gaussian filter using improved sparrow search algorithm for bearing fault extraction
    Feng, Kezhu
    Yang, Rongrong
    Wei, Zhongbin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [32] Self-Adaptive Multivariate Variational Mode Decomposition and Its Application for Bearing Fault Diagnosis
    Song, Qiuyu
    Jiang, Xingxing
    Wang, Shuang
    Guo, Jianfeng
    Huang, Weiguo
    Zhu, Zhongkui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [33] Application of optimized variational mode decomposition based on kurtosis and resonance frequency in bearing fault feature extraction
    Li, Hua
    Liu, Tao
    Wu, Xing
    Chen, Qing
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2020, 42 (03) : 518 - 527
  • [34] A Novel Empirical Variational Mode Decomposition for Early Fault Feature Extraction
    Xu, Bo
    Li, Huipeng
    IEEE ACCESS, 2022, 10 : 134826 - 134847
  • [35] Rolling bearing fault diagnosis based on variational mode decomposition and weighted multidimensional feature entropy fusion
    Lei, Na
    Huang, Feihu
    Li, Chunhui
    JOURNAL OF VIBROENGINEERING, 2024, 26 (03) : 590 - 614
  • [36] A rolling bearing fault diagnosis method based on parameter-adaptive feature mode decomposition
    Yan, Xiaoan
    Jia, Minping
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (10): : 252 - 259
  • [37] Rolling bearing fault feature extraction using Adaptive Resonancebased Sparse Signal Decomposition
    Wang, Kaibo
    Jiang, Hongkai
    Wu, Zhenghong
    Cao, Jiping
    ENGINEERING RESEARCH EXPRESS, 2021, 3 (01):
  • [38] Fault Diagnosis of Bearing Based on Variational Mode Decomposition and Deep Learning
    Cui, Jianguo
    Tang, Shan
    Cui, Xiao
    Wang, Jinglin
    Yu, Mingyue
    Du, Wenyou
    Jiang, Liying
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 5413 - 5417
  • [39] Automated Variational Nonlinear Chirp Mode Decomposition for Bearing Fault Diagnosis
    Dubey, Rahul
    Sharma, Rishi Raj
    Upadhyay, Abhay
    Pachori, Ram Bilas
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (11) : 10873 - 10882
  • [40] Bearing fault diagnosis based on variational mode decomposition and stochastic resonance
    Zhang, Xin
    Liu, Huiyu
    Zhang, Heng
    Miao, Qiang
    2018 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2018,