Space-filling designs on Riemannian manifolds

被引:0
|
作者
Ai, Mingyao [1 ,2 ]
Yang, Yunfan [1 ,2 ]
Kong, Xiangshun [3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
[3] Beijing Inst Technol, Dept Stat, Beijing 100081, Peoples R China
基金
国家重点研发计划;
关键词
Discrepancy; Hilbert curve; Support points; Uniformity; Wasserstein distance; MONTE-CARLO INTEGRATION; CENTRAL-LIMIT-THEOREM; MINIMAX; POINTS; GENES;
D O I
10.1016/j.jco.2024.101899
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes a new approach to generating space-filling designs over Riemannian manifolds by using a Hilbert curve. Different from ordinary Euclidean spaces, a novel transformation is constructed to link the uniform distribution over a Riemannian manifold and that over its parameter space. Using this transformation, the uniformity of the design points in the sense of Riemannian volume measure can be guaranteed by the intrinsic measure preserving property of the Hilbert curve. It is proved that these generated designs are not only asymptotically optimal under minimax and maximin distance criteria, but also perform well in minimizing the Wasserstein distance from the target distribution and controlling the estimation error in numerical integration. Furthermore, an efficient algorithm is developed for numerical generation of these space-filling designs. The advantages of the new approach are verified through numerical simulations. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:39
相关论文
共 50 条
  • [41] Leveraging what you know: Versatile space-filling designs
    Lu, Lu
    Anderson-Cook, Christine M.
    QUALITY ENGINEERING, 2023, 35 (04) : 566 - 583
  • [42] Two-dimensional projection uniformity for space-filling designs
    Liu, Sixu
    Wang, Yaping
    Sun, Fasheng
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (01): : 293 - 311
  • [43] SPACE-FILLING ZONOTOPES
    SHEPHARD, GC
    MATHEMATIKA, 1974, 21 (42) : 261 - 269
  • [44] Space-Filling Curves
    Holbrook, John
    MATHEMATICAL INTELLIGENCER, 1997, 19 (01): : 69 - 71
  • [45] Fast flexible space-filling designs with nominal factors for nonrectangular regions
    Lekivetz, Ryan
    Jones, Bradley
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (02) : 677 - 684
  • [46] Samurai Sudoku-Based Space-Filling Designs for Data Pooling
    Xu, Xu
    Qian, Peter Z. G.
    Liu, Qing
    AMERICAN STATISTICIAN, 2016, 70 (01): : 1 - 8
  • [47] Space-filling curves
    R. C. Mittal
    Resonance, 2000, 5 (12) : 26 - 33
  • [48] Space-filling percolation
    Chakraborty, Abhijit
    Manna, S. S.
    PHYSICAL REVIEW E, 2014, 89 (03):
  • [49] SPACE-FILLING HEXAHEDRA
    GOLDBERG, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A575 - A575
  • [50] A Radial Scanning Statistic for Selecting Space-filling Designs in Computer Experiments
    Roustant, Olivier
    Franco, Jessica
    Carraro, Laurent
    Jourdan, Astrid
    MODA 9 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2010, : 189 - 196