Domain-Invariant Label Propagation With Adaptive Graph Regularization

被引:0
|
作者
Zhang, Yanning [1 ]
Tao, Jianwen [1 ]
Yan, Liangda [2 ]
机构
[1] Ningbo Polytech, Inst Artificial Intelligence Applicat, Ningbo 315800, Peoples R China
[2] Zhejiang Business Technol Inst, Sch Elect Informat, Ningbo 315012, Zhejiang, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Adaptation models; Optimization; Deep learning; Representation learning; Training; Knowledge transfer; Upper bound; Robustness; Predictive models; Noise measurement; Domain adaptation; maximum mean discrepancy; adaptive graph Laplacian; label propagation;
D O I
10.1109/ACCESS.2024.3510889
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As an effective machine learning paradigm, domain adaptation (DA) learning aims to enhance the learning performance of the target domain by utilizing other relevant but distinct domain(s) (referred to as the source domain(s)). The existing mainstream methods for DA mainly learn discriminative domain-invariant feature representations by combining the "pseudo labels" of the target domain to better achieve knowledge transfer. However, most existing methods alternate the optimization learning of domain-invariant features and the updating of the "pseudo labels" into two different stages, which makes them difficult to achieve optimal learning performance. In order to achieve joint optimization learning of updating the "pseudo labels" and domain-invariant feature representations, a framework of Domain-Invariant Label prOpagation (DILO) with adaptive graph regularization is proposed. By combining semi-supervised knowledge adaptation and label propagation on domain data, DILO jointly optimizes domain-invariant feature representations and target learning tasks in a unified framework, allowing these two objectives to mutually benefit. Specifically, by introducing the concept of soft labels, a joint distribution measurement model is established to simultaneously alleviate both marginal and conditional distribution differences between different domains; constructing an adaptive probability graph model to enhance the robustness of label propagation. Moreover, a robust sigma -norm is applied to domain joint distribution measurement and inductive learning models to form a unified objective optimization formulation. An effective optimization algorithm is proposed for addressing the optimization problem of DILO. Compared with several representative DA methods, the proposed method achieved better or comparable robustness in adaptation learning on four cross-domain visual datasets.
引用
收藏
页码:190728 / 190745
页数:18
相关论文
共 50 条
  • [31] Multi-View Graph Learning with Adaptive Label Propagation
    Li, Sheng
    Liu, Hongfu
    Tao, Zhiqiang
    Fu, Yun
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 110 - 115
  • [32] Domain-Invariant Feature Progressive Distillation with Adversarial Adaptive Augmentation for Low-Resource Cross-Domain NER
    Zhang, Tao
    Xia, Congying
    Liu, Zhiwei
    Zhao, Shu
    Peng, Hao
    Yu, Philip
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (03)
  • [33] A Dictionary Approach to Domain-Invariant Learning in Deep Networks
    Wang, Ze
    Cheng, Xiuyuan
    Sapiro, Guillermo
    Qiu, Qiang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [34] Domain-Invariant Partial-Least-Squares Regression
    Nikzad-Langerodi, Ramin
    Zellinger, Werner
    Lughofer, Edwin
    Saminger-Platz, Susanne
    ANALYTICAL CHEMISTRY, 2018, 90 (11) : 6693 - 6701
  • [35] A Universal Ship Detection Method With Domain-Invariant Representations
    Zhang, Xin
    Yang, Xi
    Yang, Dong
    Wang, Fang
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] Domain-Invariant Disentangled Network for Generalizable Object Detection
    Lin, Chuang
    Yuan, Zehuan
    Zhao, Sicheng
    Sun, Peize
    Wang, Changhu
    Cai, Jianfei
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8751 - 8760
  • [37] Learning Domain-Invariant and Discriminative Features for Homogeneous Unsupervised Domain Adaptation
    ZHANG Yun
    WANG Nianbin
    CAI Shaobin
    ChineseJournalofElectronics, 2020, 29 (06) : 1119 - 1125
  • [38] Domain-Invariant Feature Distillation for Cross-Domain Sentiment Classification
    Hu, Mengting
    Wu, Yike
    Zhao, Shiwan
    Guo, Honglei
    Cheng, Renhong
    Su, Zhong
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 5559 - 5568
  • [39] Meta-Generalization for Domain-Invariant Speaker Verification
    Zhang, Hanyi
    Wang, Longbiao
    Lee, Kong Aik
    Liu, Meng
    Dang, Jianwu
    Meng, Helen
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 1024 - 1036
  • [40] DOMAIN-INVARIANT REGION PROPOSAL NETWORK FOR CROSS-DOMAIN DETECTION
    Yang, Xuebin
    Wan, Shouhong
    Jin, Peiquan
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,