Diatomite porous ceramic-based phase change materials with Ti3C2Tx coating for efficient solar-thermal energy conversion

被引:0
|
作者
Liu, Xianjie [1 ]
Lin, Fankai [1 ]
Guo, Zijiao [1 ]
Liu, Mingyong [1 ]
Jiang, Yuena [1 ]
Qiao, Jiaxin [1 ]
Mi, Ruiyu [1 ]
Min, Xin [1 ]
Huang, Zhaohui [1 ]
机构
[1] China Univ Geosci, Engn Res Ctr Minist Educ Geol Carbon Storage & Low, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmet Minerals & Sol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Diatomite porous ceramics; Shape stable phase change materials; Ti(3)C(2)Tx coating; Thermal energy storage; Solar-thermal conversion; PHOTOTHERMAL CONVERSION; COMPOSITE; PERFORMANCE; PARAFFIN;
D O I
10.1016/j.est.2024.114967
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Based on the thermal energy storage and solar-thermal conversion of solid-liquid phase change materials (PCMs), they feature exceptional potential for energy-saving thermal insulation and solar energy utilization in buildings. However, the inherent low thermal conductivity, susceptibility to leakage and poor solar absorption of PCMs seriously restrict their practical applications. In this work, composite PCMs were fabricated by encapsulating paraffin with diatomite porous ceramics (DC) featuring hierarchical pore structures prepared by foaming and freeze-drying. Excellent sunlight absorption and solar-thermal conversion were achieved by spraying a Ti3C2Tx coating on the DC-paraffin surface. The as-prepared DC3-PA with 55.85 % loading on paraffin possessed a satisfactory thermal storage capacity of 112.1 J/g, maintained excellent stability, and improved the thermal conductivity by 107.25 %. The solar-thermal conversion and storage efficiency of DC3/T-PA is as high as 95.24 % under 200 mW/cm2 light intensity attributed to the large broad-band solar absorption and strong localized surface plasmon resonance (LSPR) effect of the Ti3C2Tx coating. This strategy combining hierarchical porous structured ceramic encapsulation and Ti3C2Tx coating surface modification was employed for obtaining highperformance shape-stable composite PCMs, which was expected to achieve potential applications in building energy efficiency, solar energy utilization, and thermal management.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Thermal insulating walls based on Ti3C2TX as energy storage panels for future smart house
    Vaghasiya, Jayraj V.
    Mayorga-Martinez, Carmen C.
    Pumera, Martin
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [42] Ti3C2Tx MXene framework materials: Preparation, properties and applications in energy and environment
    Ahouei, Mohamad Amin
    Syed, Tajamul Hussain
    Bishop, Victoria
    Halacoglu, Selim
    Wang, Hui
    Wei, Wei
    CATALYSIS TODAY, 2023, 409 : 162 - 172
  • [43] Design and Development of Ti3C2Tx MXenes as Cathode Materials for Energy Storage Devices
    Ahmed, Muhammad Bilal
    Butt, Faaz Ahmed
    Naqvi, Asad A.
    Asad, Samra
    Awan, Zahoor ul Hussain
    Shahid, Zain
    Khan, Tayyab Azad
    JOURNAL OF TESTING AND EVALUATION, 2023, 51 (06) : 4546 - 4553
  • [44] MXene Ti3C2Tx for phase change composite with superior photothermal storage capability
    Fan, Xiaoqiao
    Liu, Lu
    Jin, Xin
    Wang, Wentao
    Zhang, Shufen
    Tang, Bingtao
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (23) : 14319 - 14327
  • [45] Review on Porous Ceramic-Based Form-Stable Phase Change Materials: Preparation, Enhance Thermal Conductivity, and Application
    Chen, Yuhui
    Sun, Jiaxiang
    Jiang, Pengyang
    Chai, Zonghua
    Zhang, Baiqiang
    Li, Junhui
    CHEMBIOENG REVIEWS, 2023, 10 (06) : 941 - 958
  • [46] Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion
    Yang, Jie
    Yu, Peng
    Tang, Li-Sheng
    Bao, Rui-Ying
    Liu, Zheng-Ying
    Yang, Ming-Bo
    Yang, Wei
    NANOSCALE, 2017, 9 (45) : 17704 - 17709
  • [47] Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity
    Zhang, Yuang
    Wang, Jiasheng
    Qiu, Jinjing
    Jin, Xin
    Umair, Malik Muhammad
    Lu, Rongwen
    Zhang, Shufen
    Tang, Bingtao
    APPLIED ENERGY, 2019, 237 : 83 - 90
  • [48] Biomass-Based Shape-Stabilized Composite Phase-Change Materials with High Solar-Thermal Conversion Efficiency for Thermal Energy Storage
    Gao, Ning
    Du, Jiaoli
    Yang, Wenbo
    Li, Youbing
    Chen, Ning
    POLYMERS, 2023, 15 (18)
  • [49] Polyurethane template-based erythritol/graphite foam composite phase change materials with enhanced thermal conductivity and solar-thermal energy conversion efficiency
    Wang, Kunyin
    Sun, Chengyu
    Biney, Bernard Wiafe
    Li, Weining
    Al-shiaani, Nabil. H. A.
    Chen, Kun
    Liu, Dong
    Guo, Aijun
    POLYMER, 2022, 256
  • [50] Novel solar membrane distillation system based on Ti3C2Tx MXene nanofluids with high photothermal conversion efficiency
    Jiang, Gangkai
    Yu, Wei
    Lei, Hui
    DESALINATION, 2022, 539