Quantum sensing with tunable superconducting qubits: optimization and speed-up

被引:0
|
作者
Danilin, S. [1 ,2 ]
Nugent, N. [1 ]
Weides, M. [1 ]
机构
[1] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Scotland
[2] Oxford Quantum Circuits, Thames Valley Sci Pk, Reading RG2 9LH, England
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 10期
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
sensing; superconducting qubits; phase estimation; INTERFERENCE DEVICES; SINGLE SPINS; BACK-ACTION; THERMOMETRY; COHERENCE; METROLOGY; PHOTON; NOISE; LIMIT;
D O I
10.1088/1367-2630/ad49c5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sensing and metrology are crucial in both fundamental science and practical applications. They meet the constant demand for precise data, enabling more dependable assessments of theoretical models' validity. Sensors, now a common feature in many fields, play a vital role in applications like gravity imaging, geology, navigation, security, timekeeping, spectroscopy, chemistry, magnetometry, healthcare, and medicine. The advancements in quantum technologies have sparked interest in employing quantum systems as sensors, offering enhanced capabilities and new possibilities. This article describes the optimization of the quantum-enhanced sensing of magnetic fluxes with a Kitaev phase estimation algorithm based on frequency tunable transmon qubits. It provides the optimal flux biasing point for sensors with different qubit transition frequencies and gives an estimation of decoherence rates and achievable sensitivity. The use of 2- and 3-qubit entangled states are compared in simulation with the single-qubit case. The flux sensing accuracy reaches 10(-8)<middle dot> Phi 0 and scales inversely with time, which proves the speed-up of sensing with high ultimate accuracy.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Fourier 1-norm and quantum speed-up
    Sebastián Alberto Grillo
    Franklin de Lima Marquezino
    Quantum Information Processing, 2019, 18
  • [22] On the role of entanglement in quantum-computational speed-up
    Jozsa, R
    Linden, N
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2036): : 2011 - 2032
  • [23] Classical-driving-assisted quantum speed-up
    Zhang, Ying-Jie
    Han, Wei
    Xia, Yun-Jie
    Cao, Jun-Peng
    Fan, Heng
    PHYSICAL REVIEW A, 2015, 91 (03):
  • [24] Quantum speed-up of Markov chain based algorithms
    Szegedy, M
    45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 32 - 41
  • [25] Mapping, programmability and scalability of problems for quantum speed-up
    Krishnamurthy, EV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (05): : 587 - 600
  • [26] Experimental quantum speed-up in reinforcement learning agents
    V. Saggio
    B. E. Asenbeck
    A. Hamann
    T. Strömberg
    P. Schiansky
    V. Dunjko
    N. Friis
    N. C. Harris
    M. Hochberg
    D. Englund
    S. Wölk
    H. J. Briegel
    P. Walther
    Nature, 2021, 591 : 229 - 233
  • [27] Experimental quantum speed-up in reinforcement learning agents
    Saggio, V.
    Asenbeck, B. E.
    Hamann, A.
    Stroemberg, T.
    Schiansky, P.
    Dunjko, V.
    Friis, N.
    Harris, N. C.
    Hochberg, M.
    Englund, D.
    Woelk, S.
    Briegel, H. J.
    Walther, P.
    NATURE, 2021, 591 (7849) : 229 - +
  • [28] Speed-up and slow-down of a quantum particle
    Gutierrez de la Cal, X.
    Pons, M.
    Sokolovski, D.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [29] Fourier 1-norm and quantum speed-up
    Grillo, Sebastian Alberto
    Marquezino, Franklin de Lima
    QUANTUM INFORMATION PROCESSING, 2019, 18 (04)
  • [30] Quantum speed-up process of atom in dissipative cavity
    Zou, Hong-Mei
    Yang, Jianhe
    Lin, Danping
    Fang, Mao-Fa
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (13)