SpikeLog: Log-Based Anomaly Detection via Potential-Assisted Spiking Neuron Network

被引:2
|
作者
Qi, Jiaxing [1 ]
Luan, Zhongzhi [1 ]
Huang, Shaohan [1 ]
Fung, Carol [2 ]
Yang, Hailong [1 ]
Qian, Depei [1 ]
机构
[1] Beihang Univ, Sino German Joint Software Inst, Beijing 100191, Peoples R China
[2] Concordia Univ, Concordia Inst Informat Syst Engn, Quebec City, PQ H3G1M8, Canada
基金
中国国家自然科学基金;
关键词
Neurons; Anomaly detection; Training; Contamination; Membrane potentials; Computational modeling; Biological neural networks; spiking neural networks; weakly supervised; log analysis; TIME-SERIES; REPRESENTATION; RECOGNITION; VOLUME;
D O I
10.1109/TKDE.2023.3347695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increasing volume and complexity of log data generated by modern systems have made it challenging to analyze and extract useful insights manually. To address this problem, many machine learning methods have been proposed for log-based anomaly detection. However, most of these methods lack interpretability, and their underlying premises do not always reflect real scenarios. In this paper, we consider a more reasonable premise scenario where a large number of logs are unlabeled, while only a small number of anomalous logs are labeled. Moreover, a small proportion of anomaly contamination may be present. To handle this practical scenario, we propose a novel hybrid potential-assisted framework (SpikeLog) using the membrane potential of spiking neurons. SpikeLog adopts a weakly supervised approach to train an anomaly score model, which effectively utilizes a limited number of labeled anomalies alongside abundant unlabeled logs while ensuring computational efficiency without compromising accuracy. Extensive experiments have demonstrated that SpikeLog outperforms baseline methods in terms of performance, robustness, interpretability, and energy consumption.
引用
收藏
页码:9322 / 9335
页数:14
相关论文
共 50 条
  • [21] LogEncoder: Log-Based Contrastive Representation Learning for Anomaly Detection
    Qi, Jiaxing
    Luan, Zhongzhi
    Huang, Shaohan
    Fung, Carol
    Yang, Hailong
    Li, Hanlu
    Zhu, Danfeng
    Qian, Depei
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (02): : 1378 - 1391
  • [22] Black-box Attacks to Log-based Anomaly Detection
    Huang, Shaohan
    Liu, Yi
    Fung, Carol
    Yang, Hailong
    Luan, Zhongzhi
    2022 18TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT (CNSM 2022): INTELLIGENT MANAGEMENT OF DISRUPTIVE NETWORK TECHNOLOGIES AND SERVICES, 2022, : 310 - 316
  • [23] PLELog: Semi-supervised Log-based Anomaly Detection via Probabilistic Label Estimation
    Yang, Lin
    Chen, Junjie
    Wang, Zan
    Wang, Weijing
    Jiang, Jiajun
    Dong, Xuyuan
    Zhang, Wenbin
    2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2021), 2021, : 230 - 231
  • [24] A robust Wide & Deep learning framework for log-based anomaly detection
    Niu, Weina
    Liao, Xuhan
    Huang, Shiping
    Li, Yudong
    Zhang, Xiaosong
    Li, Beibei
    APPLIED SOFT COMPUTING, 2024, 153
  • [25] Log-Based Anomaly Detection with the Improved K-Nearest Neighbor
    Wang, Bingming
    Ying, Shi
    Cheng, Guoli
    Wang, Rui
    Yang, Zhe
    Dong, Bo
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2020, 30 (02) : 239 - 262
  • [26] Log-Based Anomaly Detection With Robust Feature Extraction and Online Learning
    Han, Shangbin
    Wu, Qianhong
    Zhang, Han
    Qin, Bo
    Hu, Jiankun
    Shi, Xingang
    Liu, Linfeng
    Yin, Xia
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 2300 - 2311
  • [27] LogCTBL: a hybrid deep learning model for log-based anomaly detection
    Huang, Hong
    Luo, Wengang
    Wang, Yunfei
    Zhou, Yinghang
    Huang, Weitao
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (02):
  • [28] Toward a Log-based Anomaly Detection System for Cyber Range Platforms
    Blefari, Francesco
    Pironti, Francesco
    Furfaro, Angelo
    19TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY, AND SECURITY, ARES 2024, 2024,
  • [29] Improving Log-Based Anomaly Detection with Component-Aware Analysis
    Yin, Kun
    Yan, Meng
    Xu, Ling
    Xu, Zhou
    Li, Zhao
    Yang, Dan
    Zhang, Xiaohong
    2020 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME 2020), 2020, : 667 - 671
  • [30] LogCAD: An Efficient and Robust Model for Log-Based Conformal Anomaly Detection
    Liu, Chunbo
    Liang, Mengmeng
    Hou, Jingwen
    Gu, Zhaojun
    Wang, Zhi
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022