Linkages between soil respiration and soil eukaryotic microalgae following vegetation restoration in the Loess Plateau, China

被引:0
|
作者
Zhang, Lei [1 ]
Lv, Junping [2 ]
机构
[1] Department of Management, Taiyuan Normal University, Jinzhong, China
[2] School of Life Science, Shanxi University, Taiyuan, China
来源
Land Degradation and Development | 2022年 / 33卷 / 06期
基金
中国国家自然科学基金;
关键词
Carbon - Landforms - Biogeochemistry - Microorganisms - Farms - Organic compounds - Soils - Biomarkers - Sediments;
D O I
暂无
中图分类号
学科分类号
摘要
Eukaryotic microalgae are widespread in soil. They are generally considered to participate in soil development and the formation of the soil food chain. Interestingly, some microalgae can grow in heterotrophic mode. Therefore, it is a reasonable speculation that eukaryotic microalgae may participate in the process of soil respiration (Rs) via the heterotrophic metabolism of soil organic matter. Nevertheless, the mechanism is not well understood. Here, we investigated the eukaryotic microalgal community in farmland and plantation/grassland soil via high-throughput sequencing focusing on the Loess Plateau, China. Chlorophyta, Chrysophyta, Cryptophyta, Bacillariophyta, Dinophyta, Xanthophyta, and Haptophyta were found in all samples. Nevertheless, the biomarker for farmland soil was affiliated to Chlorophyta and Xanthophyta, whereas the biomarker for plantation/grassland soil was affiliated to Chrysophyta. Moreover, the distribution of soil microalgae was strongly dependent on soil pH, organic matter, and nitrogen. In addition, afforestation significantly decreased Rs rate, which was significantly related to the soil microalgal community, especially 11 taxa of eukaryotic microalgae affiliating to Chlorophyta and Chrysophyta. Meanwhile, the interaction between microalgae and bacteria in farmland soil was stronger than that in plantation/grassland soil, which was also likely to affect Rs rate. These results suggest that beyond plants, soil eukaryotic microalgae are functionally significant but rarely considered participants of Rs. Therefore, they should be considered when investigating soil carbon cycling. © 2022 John Wiley & Sons, Ltd.
引用
收藏
页码:881 / 891
相关论文
共 50 条
  • [41] Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau
    Yong-wang Zhang
    Kai-bo Wang
    Jun Wang
    Changhai Liu
    Zhou-ping Shangguan
    Scientific Reports, 11
  • [42] Effects of Vegetation Restoration on Soil Bacterial Communities, Enzyme Activities, and Nutrients of Reconstructed Soil in a Mining Area on the Loess Plateau, China
    Li, Pengfei
    Zhang, Xingchang
    Hao, Mingde
    Cui, Yongxing
    Zhu, Shilei
    Zhang, Yanjiang
    SUSTAINABILITY, 2019, 11 (08):
  • [43] Effects of 15-year vegetation restoration on organic carbon in soil aggregates on the Loess Plateau, China
    Shi, Peng
    Ren, Mingxing
    Li, Peng
    Li, Zhanbin
    Sun, Jingmei
    Min, Zhiqiang
    Ding, Shijie
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2023, 69 (03) : 344 - 357
  • [44] Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China
    Zhang, Baoqing
    He, Chansheng
    Burnham, Morey
    Zhang, Lanhui
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 539 : 436 - 449
  • [45] Effect of vegetation restoration type and topography on soil water storage and infiltration capacity in the Loess Plateau, China
    Qiu, Dexun
    Xu, Ruirui
    Gao, Peng
    Mu, Xingmin
    CATENA, 2024, 241
  • [46] Shift in soil microbial communities along ∼160 years of natural vegetation restoration on the Loess Plateau of China
    Cai, Xinwen
    Zhang, Di
    Wang, Yaqi
    Diao, Longfei
    Cheng, Xiaoli
    Luo, Yiqi
    An, Shuqing
    Yang, Wen
    APPLIED SOIL ECOLOGY, 2022, 173
  • [47] Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China
    Xu, Miaoping
    Li, Wenjie
    Wang, Jiayi
    Zhu, Yufan
    Feng, Yongzhong
    Yang, Gaihe
    Zhang, Wei
    Han, Xinhui
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 815
  • [48] Variations in soil infiltration capacity after vegetation restoration in the hilly and gully regions of the Loess Plateau, China
    Bingzhe Tang
    Juying Jiao
    Fangchen Yan
    Hang Li
    Journal of Soils and Sediments, 2019, 19 : 1456 - 1466
  • [49] Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China
    Yang, Lei
    Wei, Wei
    Chen, Liding
    Chen, Wenlin
    Wang, Jinglan
    CATENA, 2014, 115 : 123 - 133
  • [50] Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China
    Xu, Miaoping
    Li, Wenjie
    Wang, Jiayi
    Zhu, Yufan
    Feng, Yongzhong
    Yang, Gaihe
    Zhang, Wei
    Han, Xinhui
    Science of the Total Environment, 2022, 815