Direct motor rotor pyrometry using mid-infrared hollow waveguide

被引:0
|
作者
Sim, Woohyuk [1 ]
Kim, Chanyoung [1 ]
Yoon, Young-Doo [1 ]
Lee, Tonghun [2 ]
Yoo, Jihyung [1 ]
机构
[1] Hanyang Univ, Dept Automot Engn Automot Comp Convergence, Seoul, South Korea
[2] Univ Illinois, Dept Mech Sci & Engn, Champaign, IL USA
基金
新加坡国家研究基金会;
关键词
Interior permanent magnet synchronous motor; Remote thermometry; Optical diagnostics; Mid-infrared; Hollow waveguide; TEMPERATURE-MEASUREMENT; PERMANENT-MAGNETS; IPMSM;
D O I
10.1016/j.measurement.2024.116081
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A remote pyrometry method was applied to an interior permanent magnet synchronous motor (IPMSM) for a direct measurement of its rotor component temperatures. An accurate means of permanent magnet (PM) thermometry is a critical factor in an IPMSM design and operation since excessive heat can lead to irreversible performance degradation of the motor. A hollow waveguide (HWG) mounted inside the motor housing, just above the rotor end surface, collected mid-infrared surface emissions from exposed PMs and rotor core sections during rotation. The signal was then analyzed to resolve temperatures across small rotation angles along the trajectory traced out by the HWG. The sensor was calibrated in laboratory conditions and demonstrated on an actual motor under various operating conditions. The sensor enabled direct temperature measurements to within +/- 3 degrees C uncertainty near room temperature with +/- 1 degrees angular resolution at 4500 RPM. The uncertainty decreased to less than +/- 1 degrees C above 100 degrees C.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Dissipation loss of mid-infrared radiation in a dielectric waveguide
    N. S. Averkiev
    S. O. Slipchenko
    Z. N. Sokolova
    I. S. Tarasov
    Semiconductors, 2010, 44 : 243 - 245
  • [32] Mid-infrared generation and spectroscopy with a PPLN ridge waveguide
    Denzer, W.
    Hancock, G.
    Hutchinson, A.
    Munday, M.
    Peverall, R.
    Ritchie, G. A. D.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 86 (03): : 437 - 441
  • [33] Mid-infrared generation and spectroscopy with a PPLN ridge waveguide
    W. Denzer
    G. Hancock
    A. Hutchinson
    M. Munday
    R. Peverall
    G.A.D. Ritchie
    Applied Physics B, 2007, 86 : 437 - 441
  • [34] Dissipation Loss of Mid-Infrared Radiation in a Dielectric Waveguide
    Averkiev, N. S.
    Slipchenko, S. O.
    Sokolova, Z. N.
    Tarasov, I. S.
    SEMICONDUCTORS, 2010, 44 (02) : 243 - 245
  • [35] Mid-Infrared Silicon Waveguide-Based Bolometer
    Wu, Yangbo
    Qu, Zhibo
    Osman, Ahmed M.
    Cao, Wei
    Khokhar, Ali Z.
    Penades, Jordi Soler
    Mashanovich, Goran Z.
    Nedeljkovic, Milos
    Muskens, Otto L.
    2019 IEEE 16TH INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP 2019), 2019,
  • [36] Chalcogenide waveguide structure for dispersion in mid-infrared wavelength
    Ashok, Nandam
    Lee, Yeung Lak
    Shin, WooJin
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (03)
  • [37] Mid-infrared suspended waveguide platform and building blocks
    Sanchez-Postigo, Alejandro
    Wanguemert-Perez, Juan Gonzalo
    Penades, Jordi Soler
    Ortega-Monux, Alejandro
    Nedeljkovic, Milos
    Halir, Robert
    Mimun, Faysal El Mokhtari
    Cheng, Yolanda Xu
    Qu, Zhibo
    Khokhar, Ali Z.
    Osman, Ahmed
    Cao, Wei
    Littlejohns, Callum G.
    Cheben, Pavel
    Mashanovich, Goran Z.
    Molina-Fernandez, Inigo
    IET OPTOELECTRONICS, 2019, 13 (02) : 55 - 61
  • [38] Suspended Silicon Waveguide for Mid-Infrared Gas Sensing
    El Shamy, Raghi S.
    Swillam, Mohamed A.
    Khalil, Diaa A.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXIV, 2020, 11283
  • [39] Mid-infrared quasi-distributed carbon monoxide gas sensing based on QEPAS and hollow waveguide
    Qi, Lei
    Chen, Weipeng
    Qiao, Shunda
    Jiang, Jiachen
    Shi, Yiwei
    Ma, Yufei
    INFRARED PHYSICS & TECHNOLOGY, 2025, 145
  • [40] Enhancing third harmonic generation using a mid-infrared graphene plasmonic waveguide
    Rahimzadeh, Mohammad Javad
    Ghayour, Rahim
    Mohitpour, Maryam
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (11)