DDRF: Dual-branch decomposition and reconstruction architecture for infrared and visible image fusion

被引:0
|
作者
Zhang, Lei [1 ,4 ]
Zhou, Qiming [1 ]
Tang, Mingliang [1 ]
Ding, Xin [2 ]
Yang, Chengwei [3 ]
Wei, Chuyuan [1 ]
Zhou, Zhimiao [5 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Synth Elect Technol Co Ltd, Jinan 250012, Peoples R China
[3] Shandong Univ Finance & Econ, Sch Management Sci & Engn, Jinan 250014, Peoples R China
[4] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
[5] Natl Univ Singapore, Yong Loo Lin Sch Med, Singapore 117597, Singapore
来源
关键词
Image fusion; Decomposition-Reconstruction; Transformer-CNN; Feature encoder; NETWORK; NEST;
D O I
10.1016/j.optlastec.2024.111991
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Infrared and visible image fusion is an important image enhancement technique. It aims to combine information from different modalities to produce high-quality fusion images with prominent targets and rich textures. However, current image fusion methods cannot adequately extract meaningful features from modalities. So, this paper proposes a Dual-Branch Decomposition and Reconstruction Fusion (DDRF) architecture. Initially, DDRF uses residual XCiT blocks to extract shallow features from modalities. We then introduce a dual-branch Transformer-CNN feature extractor with lightweight, high-quality Base Feature Encoder Module (BFEM) and Detail Feature Encoder Module (DFEM). BFEM utilizes global attention to process low-frequency base features, while DFEM focuses on extracting high-frequency detail features. Furthermore, the fused image is generated through feature fusion and reconstruction. The combination of BFEM and DFEM not only improves the accuracy of feature extraction, but also optimizes information retention during the fusion process. Extensive experiments demonstrate that DDRF achieves excellent results in infrared and visible image fusion, especially in medical image fusion, and enhances downstream infrared-visible object detection performance.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] FDFuse: Infrared and Visible Image Fusion Based on Feature Decomposition
    Cheng, Muhang
    Huang, Haiyan
    Liu, Xiangyu
    Mo, Hongwei
    Wu, Songling
    Zhao, Xiongbo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [42] Unsupervised learning based dual-branch fusion low-light image enhancement
    Han, Guang
    Zhou, Yu
    Zeng, Fanyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (24) : 37593 - 37614
  • [43] SBDF-Net: A versatile dual-branch fusion network for medical image segmentation
    Wang, Junwen
    Tian, Shengwei
    Yu, Long
    Wang, Yongtao
    Wang, Fan
    Zhou, Zhicheng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [44] FAColorGAN: a dual-branch generative adversarial network for near-infrared image colorization
    Duan, Jin
    Gao, Meiling
    Zhao, Guangyu
    Zhao, Weiqiang
    Mo, Suxin
    Zhang, Wenxue
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 5719 - 5731
  • [45] A Dual-Branch Fusion Network for Surgical Instrument Segmentation
    Yang, Lei
    Zhai, Chenxu
    Wang, Hongyong
    Liu, Yanhong
    Bian, Guibin
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2024, 6 (04): : 1542 - 1554
  • [46] Infrared and visible image fusion through hybrid curvature filtering image decomposition
    Liu, Guote
    Zhou, Jinhui
    Li, Tong
    Wu, Weiquan
    Guo, Fang
    Luo, Bing
    Chen, Sijun
    INFRARED PHYSICS & TECHNOLOGY, 2022, 120
  • [47] Infrared and visible image fusion method of dual NSCT and PCNN
    Wu, Chunming
    Chen, Long
    PLOS ONE, 2020, 15 (09):
  • [48] Deep Image Classification Model Based on Dual-Branch
    Chen, Haoyu
    Lv, Qi
    Zhou, Wei
    Zheng, Jiang
    Wang, Jian
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 636 - 643
  • [49] DDT: Dual-branch Deformable Transformer for Image Denoising
    Liu, Kangliang
    Du, Xiangcheng
    Liu, Sijie
    Zheng, Yingbin
    Wu, Xingjiao
    Jin, Cheng
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2765 - 2770
  • [50] Gradient Guided Dual-Branch Network for Image Dehazing
    Gao, Mingliang
    Mao, Qingyu
    Li, Qilei
    Guo, Xiangyu
    Jeon, Gwanggil
    Liu, Lina
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (16)