FedFusion: Adaptive Model Fusion for Addressing Feature Discrepancies in Federated Credit Card Fraud Detection

被引:0
|
作者
Aurna, Nahid Ferdous [1 ]
Hossain, Md Delwar [1 ]
Khan, Latifur [2 ]
Taenaka, Yuzo [1 ]
Kadobayashi, Youki [1 ]
机构
[1] Nara Inst Sci & Technol, Lab Cyber Resilience, Ikoma, Nara 6300192, Japan
[2] Univ Texas Dallas, Dept Comp Sci, Big Data Analyt & Management Lab, Richardson, TX 75080 USA
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Fraud; Credit cards; Adaptation models; Training; Feature extraction; Federated learning; Long short term memory; Convolutional neural networks; Heterogeneous networks; Credit card fraud; fraud detection system; federated learning; FedFusion; CNN; MLP; LSTM; data heterogeneity; SMOTE;
D O I
10.1109/ACCESS.2024.3464333
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The digitization of financial transactions has led to a rise in credit card fraud, necessitating robust measures to secure digital financial systems from fraudsters. Nevertheless, traditional centralized approaches for detecting such frauds, despite their effectiveness, often do not maintain the confidentiality of financial data. Consequently, Federated Learning (FL) has emerged as a promising solution, enabling the secure and private training of models across organizations. However, the practical implementation of FL is challenged by data heterogeneity among institutions, complicating model convergence. To address this issue, we propose FedFusion, which leverages the fusion of local and global models to harness the strengths of both, ensuring convergence even with heterogeneous data with total feature discrepancy. Our approach involves three distinct datasets with completely different feature sets assigned to separate federated clients. Prior to FL training, datasets are preprocessed to select significant features across three deep learning models. The Multilayer Perceptron (MLP), identified as the best-performing model, undergoes personalized training for each dataset. These trained MLP models serve as local models, while the main MLP architecture acts as the global model. FedFusion then adaptively trains all clients, optimizing fusion proportions. Experimental results demonstrate the approach's superiority, achieving detection rates of 99.74%, 99.70%, and 96.61% for clients 1, 2, and 3, respectively. This highlights the effectiveness of FedFusion in addressing data heterogeneity challenges, thereby paving the way for more secure and efficient fraud detection systems in digital finance.
引用
收藏
页码:136962 / 136978
页数:17
相关论文
共 50 条
  • [41] Random Forest for Credit Card Fraud Detection
    Xuan, Shiyang
    Liu, Guanjun
    Li, Zhenchuan
    Zheng, Lutao
    Wang, Shuo
    Jiang, Changjun
    2018 IEEE 15TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC), 2018,
  • [42] Adversarial Learning in Credit Card Fraud Detection
    Zeager, Mary Frances
    Sridhar, Aksheetha
    Fogal, Nathan
    Adams, Stephen
    Brown, Donald E.
    Beling, Peter A.
    2017 SYSTEMS AND INFORMATION ENGINEERING DESIGN SYMPOSIUM (SIEDS), 2017, : 112 - 116
  • [43] Detection of credit card fraud: State of art
    Sadgali, Imane
    Sael, Nawal
    Benabbou, Faouzia
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (11): : 76 - 83
  • [44] Credit card fraud detection using a deep learning multistage model
    Georgios Zioviris
    Kostas Kolomvatsos
    George Stamoulis
    The Journal of Supercomputing, 2022, 78 : 14571 - 14596
  • [45] Neural fraud detection in credit card operations
    Dorronsoro, JR
    Ginel, F
    Sanchez, C
    Cruz, CS
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (04): : 827 - 834
  • [46] A Novel Framework for Credit Card Fraud Detection
    Mniai, Ayoub
    Tarik, Mouna
    Jebari, Khalid
    IEEE ACCESS, 2023, 11 : 112776 - 112786
  • [47] Ensemble Method for Credit Card Fraud Detection
    Wang, Rui
    Liu, Guanjun
    2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021), 2021, : 246 - 252
  • [48] Credit Card Fraud Detection Using CNN
    Murugan, Yogamahalakshmi
    Vijayalakshmi, M.
    Selvaraj, Lavanya
    Balaraman, Saranya
    INTERNET OF THINGS AND CONNECTED TECHNOLOGIES, 2022, 340 : 194 - 204
  • [49] Bayesian Quickest Detection of Credit Card Fraud
    Buonaguidi, Bruno
    Mira, Antonietta
    Bucheli, Herbert
    Vitanis, Viton
    BAYESIAN ANALYSIS, 2022, 17 (01): : 261 - 290
  • [50] Credit Card Fraud Detection: A Case Study
    Agrawal, Ayushi
    Kumar, Shiv
    Mishra, Amit Kumar
    2015 2ND INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2015, : 5 - 7