A simple upper bound for the number of spanning trees of regular graphs

被引:0
|
作者
机构
来源
Discrete Math Appl | 2008年 / 4卷 / 363-366期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] On the characterization of graphs with maximum number of spanning trees
    Petingi, L
    Boesch, F
    Suffel, C
    DISCRETE MATHEMATICS, 1998, 179 (1-3) : 155 - 166
  • [42] On the number of spanning trees in directed circulant graphs
    Lonc, Z
    Parol, K
    Wojciechowski, JM
    NETWORKS, 2001, 37 (03) : 129 - 133
  • [43] The formulas for the number of spanning trees in circulant graphs
    Li, Min
    Chen, Zhibing
    Ruan, Xiaoqing
    Yong, Xuerong
    DISCRETE MATHEMATICS, 2015, 338 (11) : 1883 - 1906
  • [44] On the number of spanning trees in graphs with multiple edges
    Hajar Sahbani
    Mohamed El Marraki
    Journal of Applied Mathematics and Computing, 2017, 55 : 245 - 255
  • [45] Cubic Graphs with Minimum Number of Spanning Trees
    Bogdanowicz, Zbigniew R.
    ARS COMBINATORIA, 2013, 110 : 227 - 238
  • [46] On Family of Graphs with Minimum Number of Spanning Trees
    Bogdanowicz, Zbigniew R.
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1647 - 1652
  • [47] A limit characterization for the number of spanning trees of graphs
    Nikolopoulos, SD
    Nomikos, C
    Rondogiannis, P
    INFORMATION PROCESSING LETTERS, 2004, 90 (06) : 307 - 313
  • [48] On the number of spanning trees of Knm±G graphs
    Nikolopoulos, Stavros D.
    Papadopoulos, Charis
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2008, 10 (01): : 235 - 248
  • [49] Completely independent spanning trees in some regular graphs
    Darties, Benoit
    Gastineau, Nicolas
    Togni, Olivier
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 163 - 174
  • [50] Random minimum length spanning trees in regular graphs
    Beveridge, A
    Frieze, A
    McDiarmid, C
    COMBINATORICA, 1998, 18 (03) : 311 - 333