On Hempel Pairs and Turaev-Viro Invariants

被引:0
|
作者
Yi LIU
机构
[1] BeijingInternationalCenterforMathematicalResearch,PekingUniversity
关键词
D O I
暂无
中图分类号
O152 [群论];
学科分类号
070104 ;
摘要
Surface bundles arising from periodic mapping classes may sometimes have non-isomorphic, but profinitely isomorphic fundamental groups. Pairs of this kind have been discovered by Hempel. This paper exhibits examples of nontrivial Hempel pairs where the mapping tori can be distinguished by some Turaev-Viro invariants, and also examples where they cannot be distinguished by any Turaev-Viro invariants.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [31] On the Turaev-Viro endomorphism and the colored Jones polynomial
    Cai, Xuanting
    Gilmer, Patrick M.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (01): : 375 - 408
  • [32] BTZ Black Hole Entropy and the Turaev-Viro Model
    Geiller, Marc
    Noui, Karim
    ANNALES HENRI POINCARE, 2015, 16 (02): : 609 - 640
  • [33] Amplitudes for topology change in Turaev-Viro theory
    Ionicioiu, R
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (07) : 1885 - 1894
  • [34] A TQFT of Turaev-Viro Type on Shaped Triangulations
    Kashaev, Rinat
    Luo, Feng
    Vartanov, Grigory
    ANNALES HENRI POINCARE, 2016, 17 (05): : 1109 - 1143
  • [35] Holonomy Observables for the Turaev-Viro Model of Quantum Gravity
    Silveira, V. M. G.
    Hadjimichef, D.
    Luna, E. G. S.
    Vasconcellos, Cesar A. Zen
    ASTRONOMISCHE NACHRICHTEN, 2025,
  • [36] Towards the Turaev-Viro amplitudes from a Hamiltonian constraint
    Bonzom, Valentin
    Dupuis, Maite
    Girelli, Florian
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [37] SPIN NETWORKS, TURAEV-VIRO THEORY AND THE LOOP REPRESENTATION
    FOXON, TJ
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (04) : 951 - 964
  • [38] Observables in the Turaev-Viro and Crane-Yetter models
    Barrett, John W.
    Martins, Joao Faria
    Garcia-Islas, J. Manuel
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
  • [39] Turaev-Viro invariant and 3nj symbols
    Carbone, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 3068 - 3085
  • [40] Algorithms and complexity for Turaev–Viro invariants
    Burton B.A.
    Maria C.
    Spreer J.
    Journal of Applied and Computational Topology, 2018, 2 (1-2) : 33 - 53