Triaxial creep test and damage model study of layered red sandstone under freeze-thaw cycles

被引:0
|
作者
Yin, Wei [1 ]
Wang, Xiaoya [1 ]
Zheng, Shuai [2 ]
Zhang, Kun [1 ]
Zhang, Fengrui [1 ]
机构
[1] Huaiyin Inst Technol, Fac Transportat Engn, Huaian 223003, Peoples R China
[2] Dalian Jiaotong Univ, Sch Transportat Engn, Dalian 116000, Peoples R China
基金
中国国家自然科学基金;
关键词
Freeze-thaw(F-T)cycles; Bedding; Red sandstone; Triaxial creep test; Microscopic damage; Creep failure model; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; CONSTITUTIVE MODEL; QUARTZ SANDSTONE; ROCK; DETERIORATION;
D O I
10.1016/j.cscm.2024.e03785
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To examine the creep behavior and degradation of stratified rock in cold areas, triaxial creep experiments and microscopic analyses were performed on layered red sandstone specimens under freeze-thaw (F-T) cycles. This study revealed the deterioration characteristics and damage mechanisms of red sandstone's creep behavior under the influence of F-T cycles and bedding inclination. The test results showed that: (1) The steady-state creep rates with bedding angles beta=30 degrees after 0, 40, 80, and 120F-T cycles were 0.0168 x 10(-2)<middle dot>h(-1), 0.0224 x 10(-2)<middle dot>h(-1), 0.0289 x 10(-2)<middle dot>h(-1), and 0.0368 x 10(-2)<middle dot>h(-1) respectively. The instantaneous deformation, creep deformation, and steady-state creep rates increased gradually with the increase of F-T cycles, while the long-term strength exhibited a decreasing trend. (2) After 40F-T cycles, the long-term strengths with bedding angles of 0 degrees, 30 degrees, 45 degrees, 60 degrees and 90 degrees were 121.17 MPa, 65.47 MPa, 46.28 MPa, 77.64 MPa and 124.78 MPa, respectively. The bedding angle of 45 degrees has the greatest influence on the triaxial creep properties of red sandstone, followed by the bedding angles of 30 degrees and 60 degrees, and the bedding angles of 0 degrees and 90 degrees have the least influence. (3) As the F-T cycles increases, the longitudinal wave velocity gradually decreases, and the pores and cracks on the sample surface continue to expand, leading to increased damage. The failure mode evolves from a single oblique shear plane to an "X"-shaped tensile splitting. Additionally, the bedding angle has a significant effect on the longitudinal wave velocity. As the bedding angle increases, the longitudinal wave velocity exhibits a "V"-shaped distribution, initially decreasing and then increasing. Based on the test results, a creep damage model of layered rock considering the influence of F-T cycles was established, and the rationality of the model was verified by test data. The research results can provide a scientific basis and technical reference for the long-term stability of layered rock engineering in cold regions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Damage Evolution and Acoustic Emission Characteristics of Sandstone under Freeze-Thaw Cycles
    Wang, Chuangye
    You, Ru
    Lv, Wenyu
    Sui, Qingrui
    Yan, Yuhang
    Zhu, Huangjin
    ACS OMEGA, 2024, 9 (04): : 4892 - 4904
  • [22] Strength deterioration model of saturated sandstone under freeze-thaw cycles
    Gao Feng
    Xiong Xin
    Zhou Ke-ping
    Li Jie-lin
    Shi Wen-chao
    ROCK AND SOIL MECHANICS, 2019, 40 (03) : 926 - 932
  • [23] Study on critical slowdown characteristics and early warning model of damage evolution of sandstone under freeze-thaw cycles
    Jin, Jiaxu
    Zhang, Xinlei
    Liu, Xiaoli
    Li, Yahao
    Li, Shaohua
    FRONTIERS IN EARTH SCIENCE, 2023, 10
  • [24] Study on the microscopic damage evolution and dynamic fracture properties of sandstone under freeze-thaw cycles
    Niu, Caoyuan
    Zhu, Zheming
    Zhou, Lei
    Li, Xiaohan
    Ying, Peng
    Dong, Yuqing
    Deng, Shuai
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2021, 191
  • [25] Coupled effects of chemical environments and freeze-thaw cycles on damage characteristics of red sandstone
    Gao, Feng
    Wang, Qiaoli
    Deng, Hongwei
    Zhang, Jian
    Tian, Weigang
    Ke, Bo
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2017, 76 (04) : 1481 - 1490
  • [26] Study of Damage Mechanism and Evolution Model of Concrete under Freeze-Thaw Cycles
    Zhao, Ning
    Lian, Shuailong
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [27] Experimental study on creep characteristics of gneiss under freeze-thaw cycles
    Yang Xiu-rong
    Jiang An-nan
    Wang Shan-yong
    Zhang Feng-rui
    ROCK AND SOIL MECHANICS, 2019, 40 (11) : 4331 - 4340
  • [28] Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model
    Xiao P.
    Chen Y.
    Du X.
    Wang S.
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2023, 45 (04): : 805 - 815
  • [29] Pore Structure Characteristics and Strength Variation of Red Sandstone under Freeze-Thaw Cycles
    Lan, Yongwei
    Gao, Hongmei
    Zhao, Yanlin
    MATERIALS, 2022, 15 (11)
  • [30] Experimental Study on Deformation and Damage Evolution of Cracked Red Sandstone Under Freeze–Thaw Cycles
    Han, Xize
    Sun, Guangchen
    Fu, Helin
    Tan, Chao
    Huang, Zailong
    Yin, Peng
    Zhang, Qishu
    Fan, Wenchen
    Yin, Shuiping
    Applied Sciences (Switzerland), 2024, 14 (23):