AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism

被引:38
|
作者
Wu, Hongjie [1 ]
Liu, Junkai [1 ,2 ]
Jiang, Tengsheng [3 ]
Zou, Quan [2 ]
Qi, Shujie [1 ]
Cui, Zhiming [1 ]
Tiwari, Prayag [4 ]
Ding, Yijie [2 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Elect & Informat Engn, Suzhou 215009, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Quzhou 324003, Peoples R China
[3] Nanjing Med Univ, Gusu Sch, Suzhou 215009, Peoples R China
[4] Halmstad Univ, Sch Informat Technol, Halmstad, Sweden
基金
中国国家自然科学基金;
关键词
Drug-target affinity; Graph neural network; Graph transformer; Attention mechanism; Multi-modal learning; NEURAL-NETWORK; PROTEIN-STRUCTURE; DYNAMICS; SEQUENCE;
D O I
10.1016/j.neunet.2023.11.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate prediction of drug-target affinity (DTA) is a crucial step in drug discovery and design. Traditional experiments are very expensive and time-consuming. Recently, deep learning methods have achieved notable performance improvements in DTA prediction. However, one challenge for deep learning-based models is appropriate and accurate representations of drugs and targets, especially the lack of effective exploration of target representations. Another challenge is how to comprehensively capture the interaction information between different instances, which is also important for predicting DTA. In this study, we propose AttentionMGT-DTA, a multi-modal attention-based model for DTA prediction. AttentionMGT-DTA represents drugs and targets by a molecular graph and binding pocket graph, respectively. Two attention mechanisms are adopted to integrate and interact information between different protein modalities and drug-target pairs. The experimental results showed that our proposed model outperformed state-of-the-art baselines on two benchmark datasets. In addition, AttentionMGT-DTA also had high interpretability by modeling the interaction strength between drug atoms and protein residues. Our code is available at https://github.com/JK-Liu7/AttentionMGT-DTA.
引用
收藏
页码:623 / 636
页数:14
相关论文
共 50 条
  • [31] NTMFF-DTA: Prediction of Drug-Target Affinity Based on Network Topology and Multi-feature Fusion
    Liu, Yuandong
    Liu, Youzhi
    Yang, Haoqin
    Zhang, Longbo
    Che, Kai
    Xing, Linlin
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2025,
  • [32] TC-DTA: Predicting Drug-Target Binding Affinity With Transformer and Convolutional Neural Networks
    Tang, Xiwei
    Zhou, Yiqiang
    Yang, Mengyun
    Li, Wenjun
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2024, 23 (04) : 572 - 578
  • [33] HSGCL-DTA: Hybrid-scale Graph Contrastive Learning based Drug-Target Binding Affinity Prediction
    Ye, Hongyan
    Song, Yingying
    Wang, Binyu
    Wu, Lianlian
    He, Song
    Bo, Xiaochen
    Zhang, Zhongnan
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 947 - 954
  • [34] MDNN-DTA: a multimodal deep neural network for drug-target affinity prediction
    Gao, Xu
    Yan, Mengfan
    Zhang, Chengwei
    Wu, Gang
    Shang, Jiandong
    Zhang, Congxiang
    Yang, Kecheng
    FRONTIERS IN GENETICS, 2025, 16
  • [35] MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug-Target Binding Affinity Prediction
    Wang, Shudong
    Song, Xuanmo
    Zhang, Yuanyuan
    Zhang, Kuijie
    Liu, Yingye
    Ren, Chuanru
    Pang, Shanchen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (09)
  • [36] Drug-target Interaction Prediction By Combining Transformer and Graph Neural Networks
    Liu, Junkai
    Lu, Yaoyao
    Guan, Shixuan
    Jiang, Tengsheng
    Ding, Yijie
    Fu, Qiming
    Cui, Zhiming
    Wu, Hongjie
    CURRENT BIOINFORMATICS, 2024, 19 (04) : 316 - 326
  • [37] Drug-Target Interaction Prediction Based on Interpretable Graph Transformer Model
    Zhu, Baozhong
    Zhang, Runhua
    Jiang, Tengsheng
    Cui, Zhiming
    Wu, Hongjie
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT III, 2023, 14088 : 676 - 686
  • [38] Integrating sequence and graph information for enhanced drug-target affinity prediction
    Haohuai HE
    Guanxing CHEN
    Calvin Yu-Chian CHEN
    ScienceChina(InformationSciences), 2024, 67 (02) : 325 - 326
  • [39] SAM-DTA: a sequence -agnostic model for drug-target binding affinity prediction
    Hu, Zhiqiang
    Liu, Wenfeng
    Zhang, Chenbin
    Huang, Jiawen
    Zhang, Shaoting
    Yu, Huiqun
    Xiong, Yi
    Liu, Hao
    Ke, Song
    Hong, Liang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [40] Hierarchical graph representation learning for the prediction of drug-target binding affinity
    Chu, Zhaoyang
    Huang, Feng
    Fu, Haitao
    Quan, Yuan
    Zhou, Xionghui
    Liu, Shichao
    Zhang, Wen
    INFORMATION SCIENCES, 2022, 613 : 507 - 523