Real-Time Monitoring of Road Networks for Pavement Damage Detection Based on Preprocessing and Neural Networks

被引:0
|
作者
Shakhovska, Nataliya [1 ,2 ,3 ]
Yakovyna, Vitaliy [4 ]
Mysak, Maksym [1 ]
Mitoulis, Stergios-Aristoteles [3 ,5 ]
Argyroudis, Sotirios [2 ,3 ]
Syerov, Yuriy [6 ,7 ]
机构
[1] Lviv Polytech Natl Univ, Dept Artificial Intelligence, UA-79905 Lvov, Ukraine
[2] Brunel Univ London, Dept Civil & Environm Engn, Uxbridge UB8 3PH, England
[3] MetaInfrastructure Org, Birmingham NW11 7HQ, England
[4] Univ Warmia & Mazury, Fac Math & Comp Sci, Ul Oczapowskiego 2, PL-10719 Olsztyn, Poland
[5] Univ Birmingham, Sch Engn, Dept Civil Engn, Birmingham B15 2TT, England
[6] Lviv Polytech Natl Univ, Social Commun & Informat Act Dept, UA-79013 Lvov, Ukraine
[7] Comenius Univ, Dept Informat Management & Business Syst, Bratislava 82005, Slovakia
基金
新加坡国家研究基金会;
关键词
pavement; damage detection; convolutional neural network; YOLO architecture; machine learning; classification; neural networks; data preprocessing; CLASSIFICATION;
D O I
10.3390/bdcc8100136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel multi-initialization model for recognizing road surface damage, e.g. potholes and cracks, on video using convolutional neural networks (CNNs) in real-time for fast damage recognition. The model is trained by the latest Road Damage Detection dataset, which includes four types of road damage. In addition, the CNN model is updated using pseudo-labeled images from semi-learned methods to improve the performance of the pavement damage detection technique. This study describes the use of the YOLO architecture and optimizes it according to the selected parameters, demonstrating high efficiency and accuracy. The results obtained can enhance the safety and efficiency of road pavement and, hence, its traffic quality and contribute to decision-making for the maintenance and restoration of road infrastructure.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Real-time polyp detection model using convolutional neural networks
    Alba Nogueira-Rodríguez
    Rubén Domínguez-Carbajales
    Fernando Campos-Tato
    Jesús Herrero
    Manuel Puga
    David Remedios
    Laura Rivas
    Eloy Sánchez
    Águeda Iglesias
    Joaquín Cubiella
    Florentino Fdez-Riverola
    Hugo López-Fernández
    Miguel Reboiro-Jato
    Daniel Glez-Peña
    Neural Computing and Applications, 2022, 34 : 10375 - 10396
  • [42] Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
    Bollepalli, Sandeep Chandra
    Sevakula, Rahul K.
    Au-Yeung, Wan-Tai M.
    Kassab, Mohamad B.
    Merchant, Faisal M.
    Bazoukis, George
    Boyer, Richard
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23):
  • [43] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10375 - 10396
  • [44] A Real-Time Ball Detection Approach Using Convolutional Neural Networks
    Teimouri, Meisam
    Delavaran, Mohammad Hossein
    Rezaei, Mahdi
    ROBOT WORLD CUP XXIII, ROBOCUP 2019, 2019, 11531 : 323 - 336
  • [45] Robust real-time face detection using hybrid neural networks
    Kim, Ho-Joon
    Lee, Juho
    Yang, Hyun-Seung
    COMPUTATIONAL INTELLIGENCE AND BIOINFORMATICS, PT 3, PROCEEDINGS, 2006, 4115 : 721 - 730
  • [46] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodríguez, Alba
    Domínguez-Carbajales, Rubén
    Campos-Tato, Fernando
    Herrero, Jesús
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sánchez, Eloy
    Iglesias, Águeda
    Cubiella, Joaquín
    Fdez-Riverola, Florentino
    López-Fernández, Hugo
    Reboiro-Jato, Miguel
    Glez-Peña, Daniel
    Neural Computing and Applications, 2022, 34 (13) : 10375 - 10396
  • [47] Towards Real-Time Drone Detection Using Deep Neural Networks
    Pulido, Cristhiam
    Ceron, Alexander
    DEVELOPMENTS AND ADVANCES IN DEFENSE AND SECURITY, MICRADS 2021, 2022, 255 : 149 - 159
  • [48] Real-Time Gender Detection in the Wild Using Deep Neural Networks
    Zeni, Luis Felipe
    Jung, Claudio
    PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2018, : 118 - 125
  • [49] REAL-TIME VEHICLE DETECTION AND TRACKING USING DEEP NEURAL NETWORKS
    Gu, Xiao-Feng
    Chen, Zi-Wei
    Ma, Ting-Song
    Li, Fan
    Yan, Long
    2016 13TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2016, : 167 - 170
  • [50] Real-time pedestrian detection using LIDAR and convolutional neural networks
    Szarvas, Mate
    Sakai, Utsushi
    Ogata, Jun
    2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2006, : 213 - +