Hierarchical Graph Convolutional Networks for Image Classification

被引:0
|
作者
Batisteli, João Pedro Oliveira [1 ]
Guimarães, Silvio Jamil Ferzoli [1 ]
do Patrocínio Júnior, Zenilton Kleber Gonçalves [1 ]
机构
[1] Image and Multimedia Data Science Laboratory (IMSCIENCE), Pontifícia Universidade Católica de Minas Gerais (PUC Minas) Belo Horizonte, Minas Gerais, Brazil
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
12th Brazilian Conference on Intelligent Systems, BRACIS 2023
中图分类号
学科分类号
摘要
Classification (of information) - Convolution - Deep learning - Graph neural networks - Graphic methods - Image representation - Semantic Segmentation - Semantics
引用
收藏
页码:63 / 76
相关论文
共 50 条
  • [31] REVISITING GRAPH CONVOLUTIONAL NETWORKS WITH MINI-BATCH SAMPLING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Hong, Danfeng
    Gao, Lianru
    Wu, Xin
    Yao, Jing
    Zhang, Bing
    2021 11TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2021,
  • [32] Superpixel Image Classification with Graph Convolutional Neural Networks Based on Learnable Positional Embedding
    Bae, Ji-Hun
    Yu, Gwang-Hyun
    Lee, Ju-Hwan
    Vu, Dang Thanh
    Anh, Le Hoang
    Kim, Hyoung-Gook
    Kim, Jin-Young
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [33] Multiple Semantic Embedding with Graph Convolutional Networks for Multi-Label Image Classification
    Zhou, Tong
    Feng, Songhe
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 449 - 461
  • [34] SFFNet: Staged Feature Fusion Network of Connecting Convolutional Neural Networks and Graph Convolutional Neural Networks for Hyperspectral Image Classification
    Li, Hao
    Xiong, Xiaorui
    Liu, Chaoxian
    Ma, Yong
    Zeng, Shan
    Li, Yaqin
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [35] Learning Dynamic Hierarchical Topic Graph with Graph Convolutional Network for Document Classification
    Wang, Zhengjue
    Wang, Chaojie
    Zhang, Hao
    Duan, Zhibin
    Zhou, Mingyuan
    Cheny, Bo
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [36] Hierarchical bilinear convolutional neural network for image classification
    Zhang, Xiang
    Tang, Lei
    Luo, Hangzai
    Zhong, Sheng
    Guan, Ziyu
    Chen, Long
    Zhao, Chao
    Peng, Jinye
    Fan, Jianping
    IET COMPUTER VISION, 2021, 15 (03) : 197 - 207
  • [37] Exploring Hierarchical Convolutional Features for Hyperspectral Image Classification
    Cheng, Gong
    Li, Zhenpeng
    Han, Junwei
    Yao, Xiwen
    Guo, Lei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (11): : 6712 - 6722
  • [38] Adaptive Graph Convolutional Network for PolSAR Image Classification
    Liu, Fang
    Wang, Jingya
    Tang, Xu
    Liu, Jia
    Zhang, Xiangrong
    Xiao, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Semisupervised graph convolutional network for hyperspectral image classification
    Liu, Bing
    Gao, Kuiliang
    Yu, Anzhu
    Guo, Wenyue
    Wang, Ruirui
    Zuo, Xibing
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02):
  • [40] Hyperspectral Image Classification With Contrastive Graph Convolutional Network
    Yu, Wentao
    Wan, Sheng
    Li, Guangyu
    Yang, Jian
    Gong, Chen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61