Intelligent Cross-Working Condition Fault Detection and Diagnosis Using Isolation Forest and Adversarial Discriminant Domain Adaptation

被引:0
|
作者
Lv, Yaqiong [1 ]
Guo, Xiaoling [1 ]
Shirmohammadi, Shervin [2 ]
Qian, Lu [1 ]
Gong, Yi [3 ]
Hu, Xinjue [4 ,5 ]
机构
[1] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan 430063, Peoples R China
[2] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
[3] Beijing Informat Sci & Technol Univ, Sch Informat & Commun Engn, Beijing 100192, Peoples R China
[4] Wuhan Univ Technol, Intelligent Transportat Syst Res Ctr, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
[5] Hubei East Lake Lab, Wuhan 420202, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Feature extraction; Fault detection; Data models; Adaptation models; Training; Accuracy; Adversarial training; domain adaptation (DA); fault detection; fault diagnosis; machine learning; IDENTIFICATION;
D O I
10.1109/TIM.2024.3457923
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increasing complexity and varying operational conditions of today's rotating machinery present significant challenges for automated fault diagnosis. While data-driven fault diagnosis methods have grown in popularity, they often rely heavily on full-cycle data, making them resource-intensive and less adaptive to diverse working conditions. Addressing this gap, our proposed system avoids the dependence on full-cycle data, employing an efficient two-stage methodology. In the initial stage, an isolation forest (iForest) module operates in an unsupervised mode, isolating operational anomalies indicative of potential faults. These identified anomalies are then channeled into the second stage, where a adversarial discriminant domain adaptation (ADDA) module performs an in-depth fault diagnosis. By streamlining the diagnostic process, our approach not only accelerates fault identification but also reduces the reliance on extensive datasets that are often a staple in conventional diagnostics. Performance evaluations with the XJTU-SY and CWRU bearing datasets show that our system reaches an accuracy of 95.67%, affirming its superiority as a cost-efficient, data-lean solution in machinery fault diagnostics.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Deep multi-scale adversarial network with attention: A novel domain adaptation method for intelligent fault diagnosis*
    Zhao, Bo
    Zhang, Xianmin
    Zhan, Zhenhui
    Wu, Qiqiang
    JOURNAL OF MANUFACTURING SYSTEMS, 2021, 59 : 565 - 576
  • [42] Prototype-guided bi-level adversarial domain adaptation network for intelligent fault diagnosis of rotating machinery under various working conditions
    Kuang, Jiachen
    Xu, Guanghua
    Zhang, Sicong
    Han, Chengcheng
    Wu, Qingqiang
    Wei, Fan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [43] A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis
    Wang, Bo
    Zhang, Meng
    Xu, Hao
    Wang, Chao
    Yang, Wenlong
    APPLIED INTELLIGENCE, 2023, 53 (20) : 24474 - 24491
  • [44] A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis
    Bo Wang
    Meng Zhang
    Hao Xu
    Chao Wang
    Wenlong Yang
    Applied Intelligence, 2023, 53 : 24474 - 24491
  • [45] AFARN: Domain Adaptation for Intelligent Cross-Domain Bearing Fault Diagnosis in Nuclear Circulating Water Pump
    Cheng, Wei
    Liu, Xue
    Xing, Ji
    Chen, Xuefeng
    Ding, Baoqing
    Zhang, Rongyong
    Zhou, Kangning
    Huang, Qian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3229 - 3239
  • [46] A Novel Joint Adversarial Domain Adaptation Method for Rotary Machine Fault Diagnosis under Different Working Conditions
    Zhao, Xiaoping
    Shao, Fan
    Zhang, Yonghong
    SENSORS, 2022, 22 (22)
  • [47] Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions
    Li, Qi
    Chen, Liang
    Kong, Lin
    Wang, Dong
    Xia, Min
    Shen, Changqing
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 234
  • [48] Cross-Domain Machinery Fault Diagnosis Using Adversarial Network with Conditional Alignments
    Xu, Nan-Xi
    Li, Xiang
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [49] Cross-Domain Fault Diagnosis of Rolling Bearings Using Domain Adaptation with Classifier Discrepancy
    Zhang Y.-C.
    Li Q.
    Ren Z.-H.
    Zhou S.-H.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (03): : 367 - 372
  • [50] Semi-Supervised Adversarial Transfer Networks for Cross-Domain Intelligent Fault Diagnosis of Rolling Bearings
    Pan, Baisong
    Wang, Wuyan
    Wen, Juan
    Li, Yifan
    APPLIED SCIENCES-BASEL, 2023, 13 (04):