Quantum algorithm for dynamic mode decomposition integrated with a quantum differential equation solver

被引:1
|
作者
Mizuno, Yuta [1 ,2 ,3 ]
Komatsuzaki, Tamiki [1 ,2 ,3 ,4 ]
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010020, Japan
[2] Hokkaido Univ, Inst Chem React Design & Discovery WPI ICReDD, Sapporo, Hokkaido 0010021, Japan
[3] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo, Hokkaido 0608628, Japan
[4] Osaka Univ, SANKEN, Osaka, Ibaraki 5670047, Japan
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
RESONANCE ENERGIES; COMPUTATION; SCATTERING; SYSTEMS;
D O I
10.1103/PhysRevResearch.6.043031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantum algorithm that analyzes time series data simulated by a quantum differential equation solver. The proposed algorithm is a quantum version of a dynamic mode decomposition algorithm used in diverse fields such as fluid dynamics, molecular dynamics, and epidemiology. Our quantum algorithm can also compute matrix eigenvalues and eigenvectors by analyzing the corresponding linear dynamical system. Our algorithm handles a broad range of matrices, particularly those with complex eigenvalues. The complexity of our quantum algorithm is O (poly log N ) for an N-dimensional system. This is an exponential speedup over known classical algorithms with at least O ( N ) complexity. Thus, our quantum algorithm is expected to enable high-dimensional dynamical systems analysis and large matrix eigenvalue decomposition, intractable for classical computers.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A quantum algorithm for linear differential equations with layerwise parameterized quantum circuits
    Xiao, Junxiang
    Wen, Jingwei
    Zhou, Zengrong
    Qian, Ling
    Huang, Zhiguo
    Wei, Shijie
    Long, Guilu
    AAPPS BULLETIN, 2024, 34 (01):
  • [42] Dynamic Concatenation of Quantum Error Correction in Integrated Quantum Computing Architecture
    Sohn, Ilkwon
    Bang, Jeongho
    Heo, Jun
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [43] Dynamic Contraction of Tensor with Quantum Algorithm
    Zhang, Yinsheng
    Zhao, Hongjian
    Minakov, Fyodor O.
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017, : 408 - 411
  • [44] Dynamic linear response quantum algorithm
    Roggero, Alessandro
    Carlson, Joseph
    PHYSICAL REVIEW C, 2019, 100 (03)
  • [45] Dynamic switching of a 10GHz quantum dot mode-locked laser using an integrated quantum dot switch
    Wang, H.
    Rae, A. R.
    Thompson, M. G.
    Penty, R. V.
    White, I. H.
    Kovsh, A. R.
    2007 PHOTONICS IN SWITCHING, 2007, : 113 - +
  • [46] Quantum Algorithm for Poisson Equation with Inhomogeneous Media
    Dang, Xunwang
    Li, Liangsheng
    Yin, Hongcheng
    Liu, Yong-Qiang
    2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - CHINA (ACES), VOL 1, 2019,
  • [47] Quantum lattice gas algorithm for the telegraph equation
    Coffey, Mark W.
    Colburn, Gabriel G.
    PHYSICAL REVIEW E, 2009, 79 (06):
  • [48] Quantum Iterative Algorithm for Linear Systems of Equation
    Roy, Debasish
    Chandra, Sambo Raj
    INTELLIGENT COMPUTING, VOL 1, 2024, 2024, 1016 : 560 - 575
  • [49] Quantum algorithm for the linear Vlasov equation with collisions
    Ameri, Abtin
    Ye, Erika
    Cappellaro, Paola
    Krovi, Hari
    Loureiro, Nuno F.
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [50] Quantum algorithm for the radiative-transfer equation
    Igarashi, Asuka
    Kadowaki, Tadashi
    Kawabata, Shiro
    PHYSICAL REVIEW APPLIED, 2024, 21 (03)