Quantum algorithm for dynamic mode decomposition integrated with a quantum differential equation solver

被引:1
|
作者
Mizuno, Yuta [1 ,2 ,3 ]
Komatsuzaki, Tamiki [1 ,2 ,3 ,4 ]
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010020, Japan
[2] Hokkaido Univ, Inst Chem React Design & Discovery WPI ICReDD, Sapporo, Hokkaido 0010021, Japan
[3] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo, Hokkaido 0608628, Japan
[4] Osaka Univ, SANKEN, Osaka, Ibaraki 5670047, Japan
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
RESONANCE ENERGIES; COMPUTATION; SCATTERING; SYSTEMS;
D O I
10.1103/PhysRevResearch.6.043031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantum algorithm that analyzes time series data simulated by a quantum differential equation solver. The proposed algorithm is a quantum version of a dynamic mode decomposition algorithm used in diverse fields such as fluid dynamics, molecular dynamics, and epidemiology. Our quantum algorithm can also compute matrix eigenvalues and eigenvectors by analyzing the corresponding linear dynamical system. Our algorithm handles a broad range of matrices, particularly those with complex eigenvalues. The complexity of our quantum algorithm is O (poly log N ) for an N-dimensional system. This is an exponential speedup over known classical algorithms with at least O ( N ) complexity. Thus, our quantum algorithm is expected to enable high-dimensional dynamical systems analysis and large matrix eigenvalue decomposition, intractable for classical computers.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] An efficient quantum partial differential equation solver with chebyshev points
    Furkan Oz
    Omer San
    Kursat Kara
    Scientific Reports, 13
  • [2] An efficient quantum partial differential equation solver with chebyshev points
    Oz, Furkan
    San, Omer
    Kara, Kursat
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Bilinear dynamic mode decomposition for quantum control
    Goldschmidt, Andy
    Kaiser, E.
    DuBois, J. L.
    Brunton, S. L.
    Kutz, J. N.
    NEW JOURNAL OF PHYSICS, 2021, 23 (03)
  • [4] Generic and scalable differential-equation solver for quantum scientific computing
    Sul, Jinhwan
    Wang, Yan
    PHYSICAL REVIEW A, 2025, 111 (01)
  • [5] Quantum Dynamic Mode Decomposition Algorithm for High-Dimensional Time Series Analysis
    Xue, Cheng
    Chen, Zhao-Yun
    Sun, Tai-Ping
    Xu, Xiao-Fan
    Chen, Si-Ming
    Liu, Huan-Yu
    Zhuang, Xi-Ning
    Wu, Yu-Chun
    Guo, Guo-Ping
    Intelligent Computing, 2023, 2
  • [6] Variational quantum evolution equation solver
    Leong, Fong Yew
    Ewe, Wei-Bin
    Koh, Dax Enshan
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Variational quantum evolution equation solver
    Fong Yew Leong
    Wei-Bin Ewe
    Dax Enshan Koh
    Scientific Reports, 12
  • [8] Alternatives to a nonhomogeneous partial differential equation quantum algorithm
    Ricardo, Alexandre C.
    Fernandes, Gabriel P. L. M.
    Duzzioni, Eduardo I.
    Campo, Vivaldo L.
    Villas-Boas, Celso J.
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [9] Variational quantum linear solver with a dynamic ansatz
    Patil, Hrushikesh
    Wang, Yulun
    Krstic, Predrag S.
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [10] Singular Value Decomposition Quantum Algorithm for Quantum Biology
    Oh, Emily K.
    Krogmeier, Timothy J.
    Schlimgen, Anthony W.
    Head-Marsden, Kade
    ACS PHYSICAL CHEMISTRY AU, 2024, 4 (04): : 393 - 399