Analysis of mapping atomic models to coarse-grained resolution

被引:1
|
作者
Kidder, Katherine M. [1 ]
Noid, W. G. [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 161卷 / 13期
基金
美国国家科学基金会;
关键词
BIOMOLECULAR COMPLEXES; DYNAMICS; PROTEINS; REPRESENTATIONS; INFORMATION; PERSPECTIVE; SITES; REDUCTION; SCHEMES; ACTIN;
D O I
10.1063/5.0220989
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low-resolution coarse-grained (CG) models provide significant computational and conceptual advantages for simulating soft materials. However, the properties of CG models depend quite sensitively upon the mapping, M, that maps each atomic configuration, r, to a CG configuration, R. In particular, M determines how the configurational information of the atomic model is partitioned between the mapped ensemble of CG configurations and the lost ensemble of atomic configurations that map to each R. In this work, we investigate how the mapping partitions the atomic configuration space into CG and intra-site components. We demonstrate that the corresponding coordinate transformation introduces a nontrivial Jacobian factor. This Jacobian factor defines a labeling entropy that corresponds to the uncertainty in the atoms that are associated with each CG site. Consequently, the labeling entropy effectively transfers configurational information from the lost ensemble into the mapped ensemble. Moreover, our analysis highlights the possibility of resonant mappings that separate the atomic potential into CG and intra-site contributions. We numerically illustrate these considerations with a Gaussian network model for the equilibrium fluctuations of actin. We demonstrate that the spectral quality, Q, provides a simple metric for identifying high quality representations for actin. Conversely, we find that neither maximizing nor minimizing the information content of the mapped ensemble results in high quality representations. However, if one accounts for the labeling uncertainty, Q(M) correlates quite well with the adjusted configurational information loss, I-map(M), that results from the mapping.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Coarse-grained models for local density gradients
    DeLyser, Michael R.
    Noid, W. G.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (03):
  • [32] Coarse-grained models: getting more with less
    Rader, A. J.
    CURRENT OPINION IN PHARMACOLOGY, 2010, 10 (06) : 753 - 759
  • [33] Coarse-grained tight-binding models
    Liu, Tian-Xiang
    Mao, Li
    Pistol, Mats-Erik
    Pryor, Craig
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (12)
  • [34] Coarse-grained mechanical models for viral capsids
    Cermelli, Paolo
    Indelicato, Giuliana
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 145
  • [35] Dissipative particle dynamics for coarse-grained models
    Curk, Tine
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (17):
  • [36] Atomistic and Coarse-Grained Models for Biomolecular Simulations
    Head-Gordon, Teresa
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 44A - 44A
  • [37] Coarse-grained molecular models of the surface of hair
    Weiand, Erik
    Ewen, James P.
    Koenig, Peter H.
    Roiter, Yuri
    Page, Steven H.
    Angioletti-Uberti, Stefano
    Dini, Daniele
    SOFT MATTER, 2022, 18 (09) : 1779 - 1792
  • [38] Modeling Chromatin Condensation with Coarse-Grained Models
    Lebold, Kathryn M.
    Best, Robert B.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 214A - 214A
  • [39] Point multipole electrostatics for coarse-grained models
    Ichiye, Toshiko
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [40] Applications of Coarse-Grained Models in Metabolic Engineering
    Doan, Dieu Thi
    Hoang, Manh Dat
    Heins, Anna-Lena
    Kremling, Andreas
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9