Modeling Interference for the Coexistence of 6G Networks and Passive Sensing Systems

被引:1
|
作者
Testolina, Paolo [1 ,2 ]
Polese, Michele [1 ,3 ]
Jornet, Josep Miquel [3 ]
Melodia, Tommaso [3 ]
Zorzi, Michele
机构
[1] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[2] Northeastern Univ, Boston, MA 02115 USA
[3] Northeastern Univ, Inst Wireless Internet Things, Boston, MA 02115 USA
关键词
Coexistence; passive sensing; 6th Generation (6G); terahertz (THz); sub-terahertz (sub-THz); COMMUNICATION; CALIBRATION; SERVICES; 5G;
D O I
10.1109/TWC.2024.3360628
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Future wireless networks and sensing systems will benefit from access to large chunks of spectrum above 100 GHz, to achieve terabit-per-second data rates in 6th Generation (6G) cellular systems and improve accuracy and reach of Earth exploration and sensing and radio astronomy applications. These are extremely sensitive to interference from artificial signals, thus the spectrum above 100 GHz features several bands which are protected from active transmissions under current spectrum regulations. To provide more agile access to the spectrum for both services, active and passive users will have to coexist without harming passive sensing operations. In this paper, we provide the first, fundamental analysis of Radio Frequency Interference (RFI) that large-scale terrestrial deployments introduce in different satellite sensing systems now orbiting the Earth. We develop a geometry-based analysis and extend it into a data-driven model which accounts for realistic propagation, building obstruction, ground reflection, for network topology with up to 105 nodes in more than 85 km2. We show that the presence of harmful RFI depends on several factors, including network load, density and topology, satellite orientation, and building density. The results and methodology provide the foundation for the development of coexistence solutions and spectrum policy towards 6G.
引用
收藏
页码:9220 / 9234
页数:15
相关论文
共 50 条
  • [21] Toward Distributed and Intelligent Integrated Sensing and Communications for 6G Networks
    Strinati, Emilio Calvanese
    Alexandropoulos, George C.
    Amani, Navid
    Crozzoli, Maurizio
    Madhusudan, Giyyarpuram
    Mekki, Sami
    Rivet, Francois
    Sciancalepore, Vincenzo
    Sehier, Philippe
    Stark, Maximilian
    Wymeersch, Henk
    IEEE WIRELESS COMMUNICATIONS, 2025, 32 (01) : 60 - 67
  • [22] Organic 6G Networks
    Corici, Marius
    Troudt, Eric
    Magedanz, Thomas
    Schotten, Hans
    2022 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT (EUCNC/6G SUMMIT), 2022, : 541 - 546
  • [23] On the Dependability of 6G Networks
    Ahmad, Ijaz
    Rodriguez, Felipe
    Huusko, Jyrki
    Seppanen, Kari
    ELECTRONICS, 2023, 12 (06)
  • [24] On the Coexistence of Heterogeneous Services in 6G Networks: An Imperfection-Aware RSMA Framework
    Chrysologou, Athanasios P.
    Tegos, Sotiris A.
    Diamantoulakis, Panagiotis D.
    Chatzidiamantis, Nestor D.
    Sofotasios, Paschalis C.
    Karagiannidis, George K.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (11) : 7152 - 7167
  • [25] Complex Systems: A Communication Networks Perspective Towards 6G
    Sergiou, Charalampos
    Lestas, Marios
    Antoniou, Pavlos
    Liaskos, Christos
    Pitsillides, Andreas
    IEEE ACCESS, 2020, 8 : 89007 - 89030
  • [26] Interference management in 6G space and terrestrial integrated networks: Challenges and approaches
    Yan S.
    Cao X.
    Liu Z.
    Liu X.
    Intelligent and Converged Networks, 2020, 1 (03): : 271 - 280
  • [27] RIS-Enabled Integrated Sensing and Communication for 6G Systems
    Wang, Dexin
    Bazzi, Ahmad
    Chafii, Marwa
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [28] 6G IoV Networks Driven by RF Digital Twin Modeling
    Liu, Zengcan
    Sun, Houjun
    Marine, Gintare
    Wu, Hulin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (03) : 2976 - 2986
  • [29] Mathematical modeling and performance evaluation of BeRAN for 6G wireless networks
    Roopa, Vuppula
    Pradhan, Himansu Shekhar
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (15): : 16479 - 16528
  • [30] Mathematical modeling and performance evaluation of BeRAN for 6G wireless networks
    Vuppula Roopa
    Himansu Shekhar Pradhan
    The Journal of Supercomputing, 2023, 79 : 16479 - 16528