deep learning;
mode recognition;
optical communication;
ATMOSPHERIC-TURBULENCE;
D O I:
10.1117/1.OE.63.5.054117
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
Orbital angular momentum (OAM) holds significant potential for achieving extremely high communication capacity, attributed to its orthogonality and infinite modes. Employing convolutional neural networks (CNN) for OAM mode recognition is an effective strategy to mitigate the effects of turbulence. However, recognition accuracy can be compromised when the training dataset is limited. To address this, we leveraged a conditional generative adversarial network (cGAN) for data augmentation (DA). The well-trained cGAN generated abundant augmented data with mode information, thereby enhancing the performance of the CNN. Experimental results clearly demonstrate that cGAN-based DA is an effective method for boosting recognition accuracy, resulting in a significant increase in recognition accuracy, rising from 24% to more than 99%. In addition, analyzing the relationship between the degree of DA and accuracy was instrumental in finding a balance between generation time cost and accuracy improvement. In addition, the application of cGAN-based DA to decomposed OAMs from the vortex array further validates its applicability in enhancing recognition performance. (c) 2024 Society of Photo-Optical Instrumentation Engineers (SPIE)
机构:
Pohang Univ Sci & Technol, Dept Convergence IT Engn, Pohang 37673, South KoreaPohang Univ Sci & Technol, Dept Convergence IT Engn, Pohang 37673, South Korea
Seo, Wonju
论文数: 引用数:
h-index:
机构:
Kim, Namho
Park, Sung-Woon
论文数: 0引用数: 0
h-index: 0
机构:
CHA Univ, CHA Gangnam Med Ctr, Dept Med, Div Endocrinol & Metab, Pochon 06135, South KoreaPohang Univ Sci & Technol, Dept Convergence IT Engn, Pohang 37673, South Korea
Park, Sung-Woon
Jin, Sang -Man
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Div Endocrinol & Metab,Dept Med, Suwon 06351, South KoreaPohang Univ Sci & Technol, Dept Convergence IT Engn, Pohang 37673, South Korea
Jin, Sang -Man
Park, Sung -Min
论文数: 0引用数: 0
h-index: 0
机构:
Pohang Univ Sci & Technol, Dept Convergence IT Engn, Pohang 37673, South Korea
Pohang Univ Sci & Technol, Dept Elect Engn, Pohang 37673, South Korea
Yonsei Univ, Inst Convergence Sci, Seoul 03722, South KoreaPohang Univ Sci & Technol, Dept Convergence IT Engn, Pohang 37673, South Korea
机构:
Kumoh Natl Inst Technol, Dept Ind Engn, Gumi, South KoreaKumoh Natl Inst Technol, Dept Ind Engn, Gumi, South Korea
Choo, Sanghyun
Park, Hoonseok
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Big Data Analyt, Seoul, South KoreaKumoh Natl Inst Technol, Dept Ind Engn, Gumi, South Korea
Park, Hoonseok
Jung, Jae-Yoon
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Big Data Analyt, Seoul, South Korea
Kyung Hee Univ, Dept Ind & Management Syst Engn, Seoul, South KoreaKumoh Natl Inst Technol, Dept Ind Engn, Gumi, South Korea
Jung, Jae-Yoon
Flores, Kevin
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Dept Math, Raleigh, NC USAKumoh Natl Inst Technol, Dept Ind Engn, Gumi, South Korea
Flores, Kevin
Nam, Chang S.
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Ind & Management Syst Engn, Seoul, South Korea
Northern Illinois Univ, Dept Ind & Syst Engn, De Kalb, IL 60115 USAKumoh Natl Inst Technol, Dept Ind Engn, Gumi, South Korea
机构:
Hadley Res LLC, South Euclid, OH 44121 USAHadley Res LLC, South Euclid, OH 44121 USA
Hadley, Aaron J.
Pulliam, Christopher L.
论文数: 0引用数: 0
h-index: 0
机构:
Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
Louis Stokes Cleveland Dept Vet Affairs Med Ctr, Cleveland, OH 44106 USAHadley Res LLC, South Euclid, OH 44121 USA