Design, modeling, and fabrication of high frequency Oersted lines for electron spin manipulation in silicon based quantum devices

被引:0
|
作者
Gaunin, Mark-Yves [1 ,2 ,3 ]
Namboodiri, Pradeep [1 ]
Restelli, Alessandro [1 ,2 ,4 ]
Kashid, Ranjit [5 ]
Wang, Xiqiao [6 ]
Fei, Fan [1 ,2 ,4 ]
Courts, Brian [1 ,2 ,4 ]
Pulikodan, Vijith Kamalon [1 ]
Wyrick, Jonathan [1 ]
Silver, Richard [1 ]
机构
[1] NIST, Nanoscale Device Characterizat Div, Phys Measurement Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA
[2] Univ Maryland, JQI, Atlantic Bldg,4254 Stadium Dr, College Pk, MD 20742 USA
[3] Univ Maryland, A James Clark Sch Engn, Dept Elect & Comp Engn, 8223 Paint Branch Dr, College Pk, MD 20742 USA
[4] Univ Maryland, Coll Comp Math & Nat Sci, Dept Phys, 4150 Campus Dr, College Pk, MD 20742 USA
[5] Ctr Mat Elect Technol C MET, Natl Ctr Quantum Mat Technol, Pashan Rd, Pune 411008, Maharashtra, India
[6] Rigetti Comp, 47430 Seabridge Dr, Fremont, CA 94538 USA
来源
基金
美国国家科学基金会;
关键词
DONOR;
D O I
10.1116/6.0004051
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Coherent manipulation of electron spins is one of the central challenges of silicon-based quantum computing efforts. Electron spin resonance (ESR) lines, or Oersted lines, allow 10-60 GHz radio frequency (RF) pulses to induce an electromagnetic field that drives Rabi oscillations in a quantum dot interface. The frequency of these Rabi oscillations is directly proportional to the strength of the induced electromagnetic field. We outline a methodology for the design of a printed circuit board and an ESR line that is able to transmit an RF pulse in the 40 GHz regime and induce an oscillating magnetic field onto a qubit device. We propose and implement a novel design by coupling a second symmetrical Oersted line in the opposing direction of the first to act as an antenna for the purpose of monitoring power and magnetic field strength at the embedded device interface.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Electron spin manipulation, detection, and relaxation in a high mobility silicon quantum well
    Matsunami, Junya
    Ooya, Mitsuaki
    Okamoto, Tohru
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 1353 - +
  • [2] Fabrication of 50 nm Metallic Lines for High Frequency Devices
    Liu, Xiaoyi
    Liao, Biyan
    Gao, Sheng
    Wang, Hong
    2019 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT 2019), 2019,
  • [3] Fabrication and characterization of quantum dot single electron spin resonance devices
    Kodera, T
    Van Der Wiel, W
    Maruyama, T
    Hirayama, Y
    Tarucha, S
    REALIZING CONTROLLABLE QUANTUM STATES: MESOSCOPIC SUPERCONDUCTIVITY AND SPINTRONICS, 2005, : 445 - 450
  • [4] High-frequency manipulation of few-electron double quantum dots - toward spin qubits
    Kodera, T
    van der Wiel, WG
    Ono, K
    Sasaki, S
    Fujisawa, T
    Tarucha, S
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 22 (1-3): : 518 - 521
  • [5] Silicon quantum dot devices for spin-based quantum computing
    Kodera, Tetsuo
    2020 IEEE SILICON NANOELECTRONICS WORKSHOP (SNW), 2020, : 31 - 32
  • [6] Design and fabrication of high electron mobility transistor devices with gallium nitride-based
    Zhu Yan-Xu
    Song Hui-Hui
    Wang Yue-Hua
    Li Lai-Long
    Shi Dong
    ACTA PHYSICA SINICA, 2017, 66 (24)
  • [7] Design and Fabrication of Nanoscale IDTs Using Electron Beam Technology for High-Frequency SAW Devices
    Shih, Wei-Che
    Chen, Ying-Chung
    Chang, Wei-Tsai
    Cheng, Chien-Chuan
    Liao, Pei-Chun
    Kao, Kuo-Sheng
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [8] Design and fabrication of nitride based high power devices
    Bandic, ZZ
    Piquette, EC
    Bridger, PM
    Kuech, TF
    McGill, TC
    POWER SEMICONDUCTOR MATERIALS AND DEVICES, 1998, 483 : 399 - 404
  • [9] High frequency electron spin resonance study of hydrogenated microcrystalline silicon
    Ehara, T
    AMORPHOUS AND NANOCRYSTALLINE SILICON-BASED FILMS-2003, 2003, 762 : 117 - 123
  • [10] Silicon quantum integrated circuits -: an attempt to fabricate silicon-based quantum devices using CMOS fabrication techniques
    Paul, DJ
    Coonan, B
    Redmond, G
    O'Neill, BJ
    Crean, GM
    Holländer, B
    Mantl, S
    Zozoulenko, I
    Berggren, KF
    Lazzari, JL
    d'Avitaya, FA
    Derrien, J
    THIN SOLID FILMS, 1998, 336 (1-2) : 130 - 136