Dual-Isometric Projected Entangled Pair States

被引:0
|
作者
Yu, Xie-Hang [1 ]
Cirac, J. Ignacio [1 ]
Kos, Pavel [1 ]
Styliaris, Georgios [1 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
关键词
The authors thank Giacomo Giudice; Yu-Jie Liu; Daniel Malz; Frank Pollmann; Balu00E1zs Pozsgay; and Rahul Trivedi for fruitful discussions. The research is part of the Munich Quantum Valley; which is supported by the Bavarian state government with funds from the Hightech Agenda Bayern Plus. The authors acknowledge funding from the projects FermiQP of the Bildungsministerium fu00FCr Bildung und Forschung (BMBF). P.u2009K. acknowledges financial support from the Alexander von Humboldt Foundation;
D O I
10.1103/PhysRevLett.133.190401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Efficient characterization of higher dimensional many-body physical states presents significant challenges. In this Letter, we propose a new class of projected entangled pair states (PEPS) that incorporates two isometric conditions. This new class facilitates the efficient calculation of general local observables and certain two-point correlation functions, which have been previously shown to be intractable for general PEPS, or PEPS with only a single isometric constraint. Despite incorporating two isometric conditions, our class preserves the rich physical structure while enhancing the analytical capabilities. It features a large set of tunable parameters, with only a subleading correction compared to that of general PEPS. Furthermore, we analytically demonstrate that this class can encode universal quantum computation and can represent a transition from topological to trivial order.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Fermionic implementation of projected entangled pair states algorithm
    Pizorn, Iztok
    Verstraete, Frank
    PHYSICAL REVIEW B, 2010, 81 (24):
  • [22] Preparing topological projected entangled pair states on a quantum computer
    Schwarz, Martin
    Temme, Kristan
    Verstraete, Frank
    Perez-Garcia, David
    Cubitt, Toby S.
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [23] Projected Entangled Pair States: Fundamental Analytical and Numerical Limitations
    Scarpa, G.
    Molnar, A.
    Ge, Y.
    Garcia-Ripoll, J. J.
    Schuch, N.
    Perez-Garcia, D.
    Iblisdir, S.
    PHYSICAL REVIEW LETTERS, 2020, 125 (21)
  • [24] Automatic differentiation applied to excitations with projected entangled pair states
    Ponsioen, Boris
    Assaad, Fakher F.
    Corboz, Philippe
    SCIPOST PHYSICS, 2022, 12 (01):
  • [25] Spectral functions with infinite projected entangled-pair states
    Espinoza, Juan Diego Arias
    Corboz, Philippe
    PHYSICAL REVIEW B, 2024, 110 (09)
  • [26] Simulating excitation spectra with projected entangled-pair states
    Vanderstraeten, Laurens
    Haegeman, Jutho
    Verstraete, Frank
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [27] Symmetries and boundary theories for chiral projected entangled pair states
    Wahl, Thorsten B.
    Hassler, Stefan T.
    Tu, Hong-Hao
    Cirac, J. Ignacio
    Schuch, Norbert
    PHYSICAL REVIEW B, 2014, 90 (11)
  • [28] Variational approach to projected entangled pair states at finite temperature
    Czarnik, Piotr
    Dziarmaga, Jacek
    PHYSICAL REVIEW B, 2015, 92 (03)
  • [29] Normal projected entangled pair states generating the same state
    Molnar, Andras
    Garre-Rubio, Jose
    Perez-Garcia, David
    Schuch, Norbert
    Cirac, J. Ignacio
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [30] Chiral topological spin liquids with projected entangled pair states
    Poilblanc, Didier
    Cirac, J. Ignacio
    Schuch, Norbert
    PHYSICAL REVIEW B, 2015, 91 (22)