Stability of the Argyrodite Electrolyte in Li-In Based All-Solid-State Batteries

被引:0
|
作者
Huang, Di [1 ]
Liu, Gao [1 ]
Tong, Wei [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 22期
关键词
all-solid-state batteries; full cells; symmetriccells; interfacial stability; Li6PS5Cl argyrodite electrolyte; Li-In alloy; Li deposit; LITHIUM-METAL BATTERIES; PERFORMANCE; ION; DENSITY; CATHODE; ANODES;
D O I
10.1021/acsaem.4c01873
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-In alloy has been largely used as a working anode in all-solid-state full cells. Incorporating indium can help stabilize the interface by suppressing the decomposition of the solid electrolyte. However, the Li-In phase diagram is complex and involves multiple phases depending on the composition. Understanding the relationship between the Li-In composition and electrochemical performance as well as identifying the root causes of cell failure is crucial for advancing this technology. Here, we present a compressive analysis of the impact of the Li-In composition on the interfacial stability of the argyrodite electrolyte in all-solid-state batteries. The Li0.5In alloy, composed of LiIn and In phases, significantly improves the interfacial stability. In contrast, when using the Li-In or Li metal anode, we observe the accumulation of large Li deposits within the solid electrolyte as well as a thick interface composed of Li2S, leading to a shortened cycle life. The Li0.5In anode enables a high critical current density of 2.0 mA cm(-2) and extends cycling for 1000 h at 0.5 mA cm(-2). Additionally, a reversible capacity of 120 mAh g(-1) is achieved over 700 cycles in the LiCoO2|Li6PS5Cl|Li0.5In full cell.
引用
收藏
页码:10376 / 10385
页数:10
相关论文
共 50 条
  • [41] Highly Stable Halide-Electrolyte-Based All-Solid-State Li-Se Batteries
    Li, Xiaona
    Liang, Jianwen
    Kim, Jung Tae
    Fu, Jiamin
    Duan, Hui
    Chen, Ning
    Li, Ruying
    Zhao, Shangqian
    Wang, Jiantao
    Huang, Huan
    Sun, Xueliang
    ADVANCED MATERIALS, 2022, 34 (20)
  • [42] Dual Protection of a Li-Ag Alloy Anode for All-Solid-State Lithium Metal Batteries with the Argyrodite Li6PS5Cl Solid Electrolyte
    Li, Bingqin
    Sun, Zhen
    Lv, Na
    Hu, Yaqi
    Jiang, Liangxing
    Zhang, Zongliang
    Liu, Fangyang
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (33) : 37738 - 37746
  • [43] Doped superior garnet electrolyte toward all-solid-state Li metal batteries
    Xing, George
    Zhu, Haoyu
    Zhuang, Anna
    Meng, Fei
    Jiang, Raymond
    Chen, Shuguang
    Chen, Guanhua
    Tang, Yongchun
    PHYSICS OPEN, 2022, 13
  • [44] Recent advances of all-solid-state polymer electrolyte for Li-ion batteries
    Ling, ZJ
    He, XM
    Li, JJ
    Jiang, CY
    Wan, CR
    PROGRESS IN CHEMISTRY, 2006, 18 (04) : 459 - 466
  • [45] Localized Electrolyte Grain Engineering to Suppress Li Intrusion in All-Solid-State Batteries
    Su, Han
    Hu, Yang
    Wang, Minkang
    Zhong, Yu
    Zhu, Jiaqi
    Kuang, Juner
    Fu, Jiamin
    Wang, Changhong
    Wang, Xiuli
    Sun, Xueliang
    Tu, Jiangping
    ADVANCED MATERIALS, 2025,
  • [46] A Review on the Molecular Modeling of Argyrodite Electrolytes for All-Solid-State Lithium Batteries
    Ayoola, Oluwasegun M.
    Buldum, Alper
    Farhad, Siamak
    Ojo, Sammy A.
    ENERGIES, 2022, 15 (19)
  • [47] Progress and Prospects of Inorganic Solid-State Electrolyte-Based All-Solid-State Li-S Batteries
    Liu, Tong
    Liu, Ronghui
    Lu, Chengxing
    Song, Wenjia
    ADVANCED SUSTAINABLE SYSTEMS, 2024,
  • [48] Theoretical insights into interfacial stability and ionic transport of Li2OHBr solid electrolyte for all-solid-state batteries
    Liu, Bo
    Liao, Piguang
    Shi, Xiaowen
    Wen, Yufeng
    Gou, Qingdong
    Yu, Meidong
    Zhou, Shenlin
    Sun, Xinyuan
    RSC ADVANCES, 2022, 12 (53) : 34627 - 34633
  • [49] Performance Improvement of Argyrodite Solid Electrolyte for All-Solid-State Battery Using Wet Process
    Choi, Yeong Jun
    Hwang, Yun Ji
    Kim, Sun-, I
    Kim, Taehyo
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (10): : 4421 - 4428
  • [50] A High-Performance Li-B-H Electrolyte for All-Solid-State Li Batteries
    Lu, Fuqiang
    Pang, Yuepeng
    Zhu, Mengfei
    Han, Fudong
    Yang, Junhe
    Fang, Fang
    Sun, Dalin
    Zheng, Shiyou
    Wang, Chunsheng
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (15)