A collaborative-learning multi-agent reinforcement learning method for distributed hybrid flow shop scheduling problem

被引:1
|
作者
Di, Yuanzhu [1 ]
Deng, Libao [1 ]
Zhang, Lili [2 ]
机构
[1] Harbin Inst Technol, Sch Informat Sci & Engn, Weihai 264209, Peoples R China
[2] Dublin City Univ, Sch Comp, Dublin, Ireland
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Multi-agent system; Reinforcement learning; Deep neural network; Collaborative learning; Distributed hybrid flow shop scheduling; problem; EVOLUTIONARY ALGORITHM; TARDINESS; MAKESPAN;
D O I
10.1016/j.swevo.2024.101764
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the increasing level of implementation of artificial intelligence technology in solving complex engineering optimization problems, various learning mechanisms, including deep learning (DL) and reinforcement learning (RL), have been developed for manufacturing scheduling. In this paper, a collaborative-learning multi-agent RL method (CL-MARL) is proposed for solving distributed hybrid flow-shop scheduling problem (DHFSP), minimizing both makespan and total energy consumption. First, the DHFSP is formulated as the Markov decision process, the features of machines and jobs are represented as state and observation matrixes according to their characteristics, the candidate operation set is used as action space, and a reward mechanism is designed based on the machine utilization. Next, a set of critic networks and actor networks, consist of recurrent neural networks and fully connected networks, are employed to map the states and observations into the output values. Then, a novel distance matching strategy is designed for each agent to select the most appropriate action at each scheduling step. Finally, the proposed CL-MARL model is trained through multi-agent deep deterministic policy gradient algorithm in collaborative-learning manner. The numerical results prove the effectiveness of the proposed multi-agent system, and the comparisons with existing algorithms demonstrate the high-potential of CL-MARL in solving DHFSP.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Multi-Agent Reinforcement Learning is A Sequence Modeling Problem
    Wen, Muning
    Kuba, Jakub Grudzien
    Lin, Runji
    Zhang, Weinan
    Wen, Ying
    Wang, Jun
    Yang, Yaodong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [42] Signal learning with messages by reinforcement learning in multi-agent pursuit problem
    Noro, Kozue
    Tenmoto, Hiroshi
    Kamiya, Akimoto
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS 18TH ANNUAL CONFERENCE, KES-2014, 2014, 35 : 233 - 240
  • [43] A Hybrid Interaction Model for Multi-Agent Reinforcement Learning
    Guisi, Douglas M.
    Ribeiro, Richardson
    Teixeira, Marcelo
    Borges, Andre P.
    Dosciatti, Eden R.
    Enembreck, Fabricio
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 2 (ICEIS), 2016, : 54 - 61
  • [44] QD-Learning: A Collaborative Distributed Strategy for Multi-Agent Reinforcement Learning Through Consensus plus Innovations
    Kar, Soummya
    Moura, Jose M. F.
    Poor, H. Vincent
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (07) : 1848 - 1862
  • [45] Collaborative multi-agent reinforcement learning based on experience propagation
    Min Fang
    Frans C.A. Groen
    Journal of Systems Engineering and Electronics, 2013, 24 (04) : 683 - 689
  • [46] Measuring Collaborative Emergent Behavior in Multi-agent Reinforcement Learning
    Barton, Sean L.
    Waytowich, Nicholas R.
    Zaroukian, Erin
    Asher, Derrik E.
    HUMAN SYSTEMS ENGINEERING AND DESIGN, IHSED2018, 2019, 876 : 422 - 427
  • [47] Multi-agent Reinforcement Learning for Collaborative Transportation Management (CTM)
    Okdinawati, Liane
    Simatupang, Togar M.
    Sunitiyoso, Yos
    AGENT-BASED APPROACHES IN ECONOMICS AND SOCIAL COMPLEX SYSTEMS IX, 2017, 15 : 123 - 136
  • [48] Collaborative Multi-Agent Reinforcement Learning Control of Parallel Robots
    Ardekani, Amirhossein Afkhami
    Masouleh, Mehdi Tale
    Yazdi, Mohammad Reza Hairi
    2022 10TH RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2022, : 67 - 74
  • [49] Collaborative multi-agent reinforcement learning based on experience propagation
    Fang, Min
    Groen, Frans C. A.
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2013, 24 (04) : 683 - 689
  • [50] Multi-Agent Reinforcement Learning
    Stankovic, Milos
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 43 - 43