Spectrally decomposed denoising diffusion probabilistic models for generative turbulence super-resolution

被引:0
|
作者
Sardar, M. [1 ]
Skillen, A. [1 ]
Zimon, M. J. [2 ,3 ]
Draycott, S. [1 ]
Revell, A. [1 ]
机构
[1] Univ Manchester, Sch Engn, Manchester, England
[2] IBM Res Europe, Daresbury, England
[3] Univ Manchester, Sch Math, Manchester, England
基金
英国工程与自然科学研究理事会;
关键词
RECONSTRUCTION;
D O I
10.1063/5.0231664
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate the statistical recovery of missing physics and turbulent phenomena in fluid flows using generative machine learning. Here, we develop and test a two-stage super-resolution method using spectral filtering to restore the high-wavenumber components of two flows: Kolmogorov flow and Rayleigh-B & eacute;nard convection. We include a rigorous examination of the generated samples via systematic assessment of the statistical properties of turbulence. The present approach extends prior methods to augment an initial super-resolution with a conditional high-wavenumber generation stage. We demonstrate recovery of fields with statistically accurate turbulence on an 8x upsampling task for both the Kolmogorov flow and the Rayleigh-B & eacute;nard convection, significantly increasing the range of recovered wavenumbers from the initial super-resolution.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Diffusion Models, Image Super-Resolution, and Everything: A Survey
    Moser, Brian B.
    Shanbhag, Arundhati S.
    Raue, Federico
    Frolov, Stanislav
    Palacio, Sebastian
    Dengel, Andreas
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [22] Parallel implementation and performance of super-resolution generative adversarial network turbulence models for large-eddy simulation
    Nista, Ludovico
    Schumann, Christoph D. K.
    Petkov, Peicho
    Pavlov, Valentin
    Grenga, Temistocle
    Macart, Jonathan F.
    Attili, Antonio
    Markov, Stoyan
    Pitsch, Heinz
    COMPUTERS & FLUIDS, 2025, 288
  • [23] Spectrally resolved super-resolution microscopy.
    Zhang, Z.
    Kenny, S. J.
    Hauser, M.
    Li, W.
    Xu, K.
    MOLECULAR BIOLOGY OF THE CELL, 2015, 26
  • [24] A diffusion probabilistic model for traditional Chinese landscape painting super-resolution
    Lyu, Qiongshuai
    Zhao, Na
    Yang, Yu
    Gong, Yuehong
    Gao, Jingli
    HERITAGE SCIENCE, 2024, 12 (01)
  • [25] A diffusion probabilistic model for traditional Chinese landscape painting super-resolution
    Qiongshuai Lyu
    Na Zhao
    Yu Yang
    Yuehong Gong
    Jingli Gao
    Heritage Science, 12
  • [26] DDFSRM: Denoising Diffusion Fusion Model for Line-Scanning Super-Resolution
    Liu, Rui
    Xiao, Ying
    Peng, Yini
    Tian, Xin
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 1357 - 1367
  • [27] Super-resolution of turbulence with dynamics in the loss
    Page, Jacob
    JOURNAL OF FLUID MECHANICS, 2025, 1002
  • [28] Simultaneous denoising and super-resolution of optical coherence tomography images based on a generative adversarial network
    Huang, Yongqiang
    Lu, Zexin
    Shao, Zhimin
    Ran, Maosong
    Zhou, Jiliu
    Fang, Leyuan
    Zhang, Yi
    OPTICS EXPRESS, 2019, 27 (09): : 12289 - 12307
  • [29] Improving the spatial resolution of solar images using super-resolution diffusion generative adversarial networks
    Song, Wei
    Ma, Ying
    Sun, Haoying
    Zhao, Xiaobing
    Lin, Ganghua
    ASTRONOMY & ASTROPHYSICS, 2024, 686
  • [30] ImpRes: implicit residual diffusion models for image super-resolution
    Zhang, Shiyun
    Deng, Xing
    Shao, Haijian
    Jiang, Yingtao
    VISUAL COMPUTER, 2024,