An interpretable electrocardiogram-based model for predicting arrhythmia and ischemia in cardiovascular disease

被引:4
|
作者
Sathi, Tanjila Alam [1 ]
Jany, Rafsan [1 ]
Ela, Razia Zaman [1 ]
Azad, Akm [2 ]
Alyami, Salem Ali [2 ]
Hossain, Md Azam [1 ]
Hussain, Iqram [3 ]
机构
[1] Islamic Univ & Technol IUT, Dept Comp Sci & Engn, Gazipur, Bangladesh
[2] Al Imam Muhammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Riyadh, Saudi Arabia
[3] Cornell Univ, Dept Anesthesiol, Weill Cornell Med, New York, NY 10065 USA
关键词
Cardiovascular disease; Electrocardiogram; Arrhythmia; Ischemia; Machine-learning; Interpretability;
D O I
10.1016/j.rineng.2024.103381
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Introduction: Cardiovascular disease (CVD) is a leading cause of death and disability globally, with ischemia and arrhythmias being critical contributors. Ischemia, due to reduced myocardial blood flow, can lead to sudden cardiac death, while arrhythmias, marked by abnormal heart rhythms, are common in the elderly. Electrocardiography (ECG) is essential for the diagnosis of these conditions. This study aims to develop a clinically interpretable diagnostic framework for ischemia and arrhythmias using key ECG fiducial features. Methods: To develop a robust ECG-based model for predicting cardiovascular diseases, we integrated data from three well-established ECG datasets: MIT-BIH Arrhythmia, European ST-T, and Fantasia. This aggregated dataset was employed to train multiple machine learning (ML) models aimed at automatically classifying heart conditions, including arrhythmia, ischemia, and healthy states. We designed a predictive framework utilizing boosting ML algorithms, enhanced by explainable artificial intelligence (XAI) techniques, to ensure high predictive performance in model interpretation. Results: The histogram gradient boosting classifier demonstrated superior classification performance, achieving an overall accuracy of 90 % in predicting heart disease based on ECG fiducial features. The model achieved area under the curve (AUC) scores of 0.99, 0.99, and 0.89 for the healthy, ischemic, and arrhythmic classes, respectively. XAI methods revealed that ECG fiducial features, such as the P-H, R-H, RR interval, QRS duration, QT interval, and ST segment, were significant diagnostic indicators for heart disease. Conclusions: This study uses machine learning and XAI models to classify arrhythmia and ischemia from ECG data, enhancing interpretability clinical diagnostics for prevention and intervention to reduce disabilities.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model
    Adedinsewo, Demilade A.
    Johnson, Patrick W.
    Douglass, Erika J.
    Attia, Itzhak Zachi
    Phillips, Sabrina D.
    Goswami, Rohan M.
    Yamani, Mohamad H.
    Connolly, Heidi M.
    Rose, Carl H.
    Sharpe, Emily E.
    Blauwet, Lori
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Carter, Rickey E.
    Noseworthy, Peter A.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (04): : 586 - 596
  • [22] Electrocardiogram-based deep learning to predict mortality in paediatric and adult congenital heart disease
    Mayourian, Joshua
    El-Bokl, Amr
    Lukyanenko, Platon
    La Cava, William G.
    Geva, Tal
    Valente, Anne Marie
    Triedman, John K.
    Ghelani, Sunil J.
    EUROPEAN HEART JOURNAL, 2024, 46 (09) : 856 - 868
  • [23] Electrocardiogram parameters for predicting future arrhythmia in patients with stable chronic obstructive pulmonary disease
    Candemir, Ipek
    Baskovski, Emir
    Candemir, Basar
    Kaymaz, Dicle
    TUBERKULOZ VE TORAKS-TUBERCULOSIS AND THORAX, 2022, 70 (01): : 1 - 7
  • [24] A novel electrocardiogram-based model for prediction of dementia: the Atherosclerosis Risk in Communities (ARIC) study
    Chen, D.
    Yao, Y.
    Moser, E.
    Wang, W.
    Soliman, E.
    Mosley, T.
    Pan, W. E., I
    EUROPEAN HEART JOURNAL, 2024, 45
  • [25] Life-threatening ventricular arrhythmia prediction in patients with dilated cardiomyopathy using explainable electrocardiogram-based deep neural networks
    Sammani, Arjan
    van de Leur, Rutger R.
    Henkens, Michiel T. H. M.
    Meine, Mathias
    Loh, Peter
    Hassink, Rutger J.
    Oberski, Daniel L.
    Heymans, Stephane R. B.
    Doevendans, Pieter A.
    Asselbergs, Folkert W.
    te Riele, Anneline S. J. M.
    van Es, Rene
    EUROPACE, 2022, 24 (10): : 1645 - 1654
  • [26] Development of the AI-Cirrhosis-ECG Score: An Electrocardiogram-Based Deep Learning Model in Cirrhosis
    Ahn, Joseph C.
    Attia, Zachi, I
    Rattan, Puru
    Mullan, Aidan F.
    Buryska, Seth
    Allen, Alina M.
    Kamath, Patrick S.
    Friedman, Paul A.
    Shah, Vijay H.
    Noseworthy, Peter A.
    Simonetto, Douglas A.
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2022, 117 (03): : 424 - 432
  • [27] A Signal Segmentation-Free Model for Electrocardiogram-Based Obstructive Sleep Apnea Severity Classification
    Chen, Jeng-Wen
    Lin, Shih-Tsang
    Wang, Cheng-Yi
    Lin, Chun-Cheng
    Hsu, Kuan-Chun
    Yeh, Cheng-Yu
    Hwang, Shaw-Hwa
    ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (03)
  • [28] A hybrid cardiovascular arrhythmia disease detection using ConvNeXt-X models on electrocardiogram signals
    Talukder, Md. Alamin
    Khalid, Majdi
    Kazi, Mohsin
    Muna, Nusrat Jahan
    Nur-e-Alam, Mohammad
    Halder, Sajal
    Sultana, Nasrin
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [29] Clinical value of dynamic electrocardiogram in detecting myocardial ischemia and arrhythmia in elderly patients with coronary heart disease
    Yi, Shaorui
    Cong, Linqiang
    Zhang, Yuqiang
    MINERVA MEDICA, 2023, 114 (02) : 283 - 284
  • [30] A generalizable electrocardiogram-based artificial intelligence model for 10-year heart failure risk prediction
    Butler, Liam
    Karabayir, Ibrahim
    Kitzman, Dalane W.
    Alonso, Alvaro
    Tison, Geoffrey H.
    Chen, Lin Yee
    Chang, Patricia P.
    Clifford, Gari
    Soliman, Elsayed Z.
    Akbilgic, Oguz
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2023, 4 (06): : 183 - 190