AnlightenDiff: Anchoring Diffusion Probabilistic Model on Low Light Image Enhancement

被引:0
|
作者
Chan, Cheuk-Yiu [1 ,2 ]
Siu, Wan-Chi [1 ,2 ]
Chan, Yuk-Hee [3 ]
Chan, H. Anthony [4 ]
机构
[1] Hong Kong Polytech Univ PolyU, Dept Elect & Elect Engn EEE, Hong Kong, Peoples R China
[2] St Francis Univ SFU, Sch Comp & Informat Sci SCIS, Hong Kong, Peoples R China
[3] PolyU, Dept EEE, Hong Kong, Peoples R China
[4] SFU, SCIS, Hong Kong, Peoples R China
关键词
Diffusion models; Noise; Image enhancement; Perturbation methods; Lighting; Noise measurement; Image reconstruction; Predictive models; Diffusion processes; Mathematical models; Low light image enhancement; image processing; deep learning; NETWORK;
D O I
10.1109/TIP.2024.3486610
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-light image enhancement aims to improve the visual quality of images captured under poor illumination. However, enhancing low-light images often introduces image artifacts, color bias, and low SNR. In this work, we propose AnlightenDiff, an anchoring diffusion model for low light image enhancement. Diffusion models can enhance the low light image to well-exposed image by iterative refinement, but require anchoring to ensure that enhanced results remain faithful to the input. We propose a Dynamical Regulated Diffusion Anchoring mechanism and Sampler to anchor the enhancement process. We also propose a Diffusion Feature Perceptual Loss tailored for diffusion based model to utilize different loss functions in image domain. AnlightenDiff demonstrates the effect of diffusion models for low-light enhancement and achieving high perceptual quality results. Our techniques show a promising future direction for applying diffusion models to image enhancement.
引用
收藏
页码:6324 / 6339
页数:16
相关论文
共 50 条
  • [1] Low Light Image Enhancement Based on Retinex Theory and Diffusion Model
    Chen, Tao
    Liu, Dongmei
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, ICDSP 2024, 2024, : 21 - 26
  • [2] Image Intrinsic Components Guided Conditional Diffusion Model for Low-Light Image Enhancement
    Kang, Sicong
    Gao, Shuaibo
    Wu, Wenhui
    Wang, Xu
    Wang, Shuoyao
    Qiu, Guoping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13244 - 13256
  • [3] MCLL-Diff: Multiconditional Low-Light Image Enhancement Based on Diffusion Probabilistic Models
    Chen, Fengxin
    Yu, Ye
    Yi, Jun
    Zhang, Ting
    Zhao, Ji
    Jia, Wei
    Yu, Jun
    IEEE SENSORS JOURNAL, 2025, 25 (06) : 9912 - 9924
  • [4] Probabilistic error diffusion for image enhancement
    Liu, Tiecheng
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2007, 53 (02) : 528 - 534
  • [5] L2DM: A Diffusion Model for Low-Light Image Enhancement
    Lv, Xingguo
    Dong, Xingbo
    Jin, Zhe
    Zhang, Hui
    Song, Siyi
    Li, Xuejun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XI, 2024, 14435 : 130 - 145
  • [6] DLDiff: Image Detail-Guided Latent Diffusion Model for Low-Light Image Enhancement
    Xue, Minglong
    He, Yanyi
    He, Jinhong
    Zhong, Senming
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2255 - 2259
  • [7] Underwater image enhancement method based on denoising diffusion probabilistic model
    Lu, Siqi
    Guan, Fengxu
    Zhang, Hanyu
    Lai, Haitao
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 96
  • [8] Low-light image enhancement by diffusion pyramid with residuals
    Kim, Wonjun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 81
  • [9] Pyramid Diffusion Models for Low-light Image Enhancement
    Zhou, Dewei
    Yang, Zongxin
    Yang, Yi
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1795 - 1803
  • [10] PSC diffusion: patch-based simplified conditional diffusion model for low-light image enhancement
    Wan, Fei
    Xu, Bingxin
    Pan, Weiguo
    Liu, Hongzhe
    MULTIMEDIA SYSTEMS, 2024, 30 (04)