Nanoscale Understanding on CO2 Diffusion and Adsorption in Clay Matrix Nanopores: Implications for Carbon Geosequestration

被引:2
|
作者
Pang, Jiangtao [1 ,2 ]
Liang, Yunfeng [3 ]
Mi, Fengyi [1 ]
Jiang, Guosheng [1 ,2 ]
Tsuji, Takeshi [3 ]
Ning, Fulong [1 ,2 ]
机构
[1] China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China
[2] Natl Ctr Int Res Deep Earth Drilling & Resource De, Wuhan 430074, Hubei, Peoples R China
[3] Univ Tokyo, Sch Engn, Dept Syst Innovat, Tokyo 1138656, Japan
基金
日本学术振兴会; 中国博士后科学基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
carbon capture andstorage (CCS); CO2; diffusion; adsorption; nanoporous clay matrix; kaolinite; molecular dynamics simulation; MOLECULAR-DYNAMICS SIMULATIONS; KAOLINITE; DIOXIDE; SHALE; MONTMORILLONITE; METHANE; WATER; PERMEABILITY; COEFFICIENT; CAPACITIES;
D O I
10.1021/acs.est.4c08158
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon capture and storage (CCS) in subsurface reservoirs represents a highly promising and viable strategy for mitigating global carbon emissions. In the context of CCS implementation, it is particularly crucial to understand the complex molecular diffusive and adsorptive behaviors of anthropogenic carbon dioxide (CO2) in the subsurface at the nanoscale. Yet, conventional molecular models typically represent only single-slit pores and overlook the complexity of interconnected nanopores. In this work, finite kaolinite lamellar assemblages with abundant nanopores (r < 2 nm) were used. Molecular dynamics simulations were performed to quantify the spatial distribution correlations, adsorption preference, diffusivity, and residence time of the CO2 molecules in kaolinite nanopores. The movement of the CO2 molecules primarily occurs in the central and proximity regions of the siloxane surfaces, progressing from larger to smaller nanopores. CO2 prefers smaller nanopores over larger ones. The diffusion coefficients increase, while residence times decrease, with the pore size increasing, differing from typical slit-pore models due to the pore shape and interconnectivity. The perspectives in this study, which would be challenging in conventional slit-pore models, will facilitate our comprehension of the CO2 molecular behaviors in the complex subsurface clay sediments for developing quantitative estimation techniques throughout the CCS project durations.
引用
收藏
页码:20401 / 20411
页数:11
相关论文
共 50 条
  • [41] CO2 adsorption on binderless activated carbon monoliths
    Paola Vargas, Diana
    Giraldo, Liliana
    Silvestre-Albero, Joaquin
    Carlos Moreno-Pirajan, Juan
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2011, 17 (03): : 497 - 504
  • [42] Calorimetric study of the CO2 adsorption on carbon materials
    Diana P. Vargas
    L. Giraldo
    J. C. Moreno-Piraján
    Journal of Thermal Analysis and Calorimetry, 2014, 117 : 1299 - 1309
  • [43] CO2 adsorption on chemically modified activated carbon
    Caglayan, Burcu Selen
    Aksoylu, A. Erhan
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 252 : 19 - 28
  • [44] Effect of water on CO2 adsorption with activated carbon
    Cen, Qigang
    Fang, Mengxiang
    Wang, Zhen
    Luo, Zhongyang
    2013 INTERNATIONAL CONFERENCE ON MATERIALS FOR RENEWABLE ENERGY AND ENVIRONMENT (ICMREE), VOLS 1-3, 2013, : 885 - 888
  • [45] Adsorption of CO2 on molecular sieves and activated carbon
    Siriwardane, RV
    Shen, MS
    Fisher, EP
    Poston, JA
    ENERGY & FUELS, 2001, 15 (02) : 279 - 284
  • [46] CO2 adsorption on binderless activated carbon monoliths
    Diana Paola Vargas
    Liliana Giraldo
    Joaquín Silvestre-Albero
    Juan Carlos Moreno-Piraján
    Adsorption, 2011, 17 : 497 - 504
  • [47] Surface modification of activated carbon for CO2 adsorption
    Gao Feng
    Wang Yuan
    Li Cun-mei
    Xu Zhi-xiong
    Zhang Chang-ming
    Wang Jian-long
    Li Kai-xi
    NEW CARBON MATERIALS, 2014, 29 (02) : 96 - 101
  • [48] Calorimetric study of the CO2 adsorption on carbon materials
    Vargas, Diana P.
    Giraldo, L.
    Moreno-Pirajan, J. C.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 117 (03) : 1299 - 1309
  • [49] Adsorption CO2 on activated carbon with surface modification
    Lin, Cheng
    Zhang, Huiyun
    Lin, Xiaoying
    Feng, Yunfei
    ADVANCES IN CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING, PTS 1-5, 2013, 634-638 : 746 - 750
  • [50] Molecular dynamics simulation on CO2 hydrate growth and CH4-CO2 replacement in various clay nanopores
    Mi, Fengyi
    He, Zhongjin
    Ning, Fulong
    ENERGY, 2025, 314