Enhancing cross-subject EEG emotion recognition through multi-source manifold metric transfer learning

被引:1
|
作者
Shi X. [1 ]
She Q. [1 ,4 ]
Fang F. [2 ]
Meng M. [1 ,4 ]
Tan T. [3 ]
Zhang Y. [2 ]
机构
[1] School of Automation, Hangzhou Dianzi University, Zhejiang, Hangzhou
[2] Department of Biomedical Engineering, University of Miami, Coral Gables, FL
[3] Department of Rehabilitation, Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, Hangzhou
[4] International Joint Research Laboratory for Autonomous Robotic Systems, Zhejiang, Hangzhou
基金
中国国家自然科学基金;
关键词
Affective brain-computer interface (aBCI); Electroencephalogram (EEG); Emotion recognition; Metric transfer learning;
D O I
10.1016/j.compbiomed.2024.108445
中图分类号
学科分类号
摘要
Transfer learning (TL) has demonstrated its efficacy in addressing the cross-subject domain adaptation challenges in affective brain-computer interfaces (aBCI). However, previous TL methods usually use a stationary distance, such as Euclidean distance, to quantify the distribution dissimilarity between two domains, overlooking the inherent links among similar samples, potentially leading to suboptimal feature mapping. In this study, we introduced a novel algorithm called multi-source manifold metric transfer learning (MSMMTL) to enhance the efficacy of conventional TL. Specifically, we first selected the source domain based on Mahalanobis distance to enhance the quality of the source domains and then used manifold feature mapping approach to map the source and target domains on the Grassmann manifold to mitigate data drift between domains. In this newly established shared space, we optimized the Mahalanobis metric by maximizing the inter-class distances while minimizing the intra-class distances in the target domain. Recognizing that significant distribution discrepancies might persist across different domains even on the manifold, to ensure similar distributions between the source and target domains, we further imposed constraints on both domains under the Mahalanobis metric. This approach aims to reduce distributional disparities and enhance the electroencephalogram (EEG) emotion recognition performance. In cross-subject experiments, the MSMMTL model exhibits average classification accuracies of 88.83 % and 65.04 % for SEED and DEAP, respectively, underscoring the superiority of our proposed MSMMTL over other state-of-the-art methods. MSMMTL can effectively solve the problem of individual differences in EEG-based affective computing. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [41] Cross-Subject emotion recognition from EEG using Convolutional Neural Networks
    Zhong, Xiaolong
    Yin, Zhong
    Zhang, Jianhua
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7516 - 7521
  • [42] Study on Driver Cross-Subject Emotion Recognition Based on Raw Multi-Channels EEG Data
    Wang, Zhirong
    Chen, Ming
    Feng, Guofu
    ELECTRONICS, 2023, 12 (11)
  • [43] Cross-Subject Emotion Recognition From Multichannel EEG Signals Using Multivariate Decomposition and Ensemble Learning
    Vempati, Raveendrababu
    Sharma, Lakhan Dev
    Tripathy, Rajesh Kumar
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2025, 17 (01) : 77 - 88
  • [44] Cross-Subject EEG-Based Emotion Recognition with Deep Domain Confusion
    Zhang, Weiwei
    Wang, Fei
    Jiang, Yang
    Xu, Zongfeng
    Wu, Shichao
    Zhang, Yahui
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT I, 2019, 11740 : 558 - 570
  • [45] Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition
    Jimenez-Guarneros, Magdiel
    Fuentes-Pineda, Gibran
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [46] Comprehensive Multisource Learning Network for Cross-Subject Multimodal Emotion Recognition
    Chen, Chuangquan
    Li, Zhencheng
    Kou, Kit Ian
    Du, Jie
    Li, Chen
    Wang, Hongtao
    Vong, Chi-Man
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 365 - 380
  • [47] Multisource Associate Domain Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition
    She, Qingshan
    Zhang, Chenqi
    Fang, Feng
    Ma, Yuliang
    Zhang, Yingchun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [48] Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features
    Yang, Fu
    Zhao, Xingcong
    Jiang, Wenge
    Gao, Pengfei
    Liu, Guangyuan
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2019, 13
  • [49] Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
    Li, Jingcong
    Li, Shuqi
    Pan, Jiahui
    Wang, Fei
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [50] EEG Feature Selection for Emotion Recognition Based on Cross-subject Recursive Feature Elimination
    Zhang, Wei
    Yin, Zhong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6256 - 6261