Techno-economic analysis of thermochemical-integrated pumped thermal energy storage system

被引:0
|
作者
Hu, Yang [1 ]
Yao, Erren [1 ]
Zhong, Like [1 ,2 ,3 ,4 ]
Wu, Shuhong [1 ]
Zou, Hansen [1 ]
Xi, Guang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
[2] State Power Investment Corp Energy Sci & Technol R, Shanghai 200240, Peoples R China
[3] Qinghai Adv Energy Storage Lab, Xining 810007, Peoples R China
[4] State Power Investment Corp Photovolta Energy Stor, Xian 710061, Peoples R China
基金
中国国家自然科学基金;
关键词
Pumped thermal energy storage; Methanol thermochemical decomposition; Isothermal compression; Thermo-economic analysis; Multi-objective optimization; THERMODYNAMIC ANALYSIS; MULTIOBJECTIVE OPTIMIZATION; CONCEPTUAL DESIGN; HEAT INTEGRATION; EXERGY ANALYSIS; ELECTRICITY; PART; METHANOL; CYCLES;
D O I
10.1016/j.est.2024.114394
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Energy storage technology can address the imbalance and mismatch between the supply and demand of renewable electricity. Pumped thermal energy storage technology has great developmental potential as it is not geographically limited and offers high energy density. For this technology, storing and utilizing thermal energy is the key to improve system efficiency and reduce thermal loss of the system. Thus, in this work, a pumped thermal energy storage system with air as the working medium, coupled with methanol decomposition technology, was proposed. Low-grade thermal energy can be converted into high-grade chemical energy for storage based on the endothermic chemical reaction during the charging process. An isothermal compression strategy was employed during the discharging process to simultaneously minimize the compression power consumption and achieve energy-efficient utilization. Thermodynamic, economic, and environmental theoretical models were also established in this work, then the sensitivity analysis and multi-objective optimization were conducted. It was found that the system required the optimal air-methanol ratio, low-pressure turbine-pressure ratio, and isentropic efficiency of the adiabatic compressor to obtain the optimal thermodynamic and economic performance. The multi-objective optimization results of the system showed that the round-trip efficiency, exergy efficiency, and energy storage density of the system under optimal design working conditions were 63.70 %, 61.62 %, and 8.10 kWh<middle dot>m(-3), respectively, which increased by 5.80 %, 5.88 %, and 6.30 %, respectively, compared with those under the base conditions. The levelized energy cost and carbon emission per unit energy of the system were 202.14 $<middle dot>MWh(-1) and 199.03 kg<middle dot>MWh(-1), respectively, which decreased by 0.61 % and 7.51 %, respectively, compared with those under the base conditions. This work can provide a theoretical basis for the technical and economic feasibilities of the pumped thermal energy storage systemand its applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Techno-economic and social analysis of energy storage for commercial buildings
    Yan, Xiaohui
    Zhang, Xuehui
    Chen, Haisheng
    Xu, Yujie
    Tan, Chunqing
    ENERGY CONVERSION AND MANAGEMENT, 2014, 78 : 125 - 136
  • [42] Techno-economic analysis of grid-tied energy storage
    Masebinu, S. O.
    Akinlabi, E. T.
    Muzenda, E.
    Aboyade, A. O.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2018, 15 (01) : 231 - 242
  • [43] Stacking Grid Services with Energy Storage Techno-Economic Analysis
    Tsagkou, Anna S.
    Kerasidis, Evangelos D.
    Doukas, Dimitrios I.
    Labridis, Dimitris P.
    Marinopoulos, Antonis G.
    Tengner, Tomas
    2017 IEEE MANCHESTER POWERTECH, 2017,
  • [44] Techno-economic analysis of grid-tied energy storage
    S. O. Masebinu
    E. T. Akinlabi
    E. Muzenda
    A. O. Aboyade
    International Journal of Environmental Science and Technology, 2018, 15 : 231 - 242
  • [45] Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK
    Renaldi, Renaldi
    Friedrich, Daniel
    APPLIED ENERGY, 2019, 236 : 388 - 400
  • [46] Techno-economic analysis of metal hydride-based energy storage system in microgrid
    Kumar, Kuldeep
    Alam, Mohd
    Dutta, Viresh
    ENERGY STORAGE, 2019, 1 (03)
  • [47] Techno-economic analysis of multi-generation liquid air energy storage system
    Cui, Shuangshuang
    He, Qing
    Liu, Yixue
    Wang, Tingting
    Shi, Xingping
    Du, Dongmei
    APPLIED THERMAL ENGINEERING, 2021, 198
  • [48] Techno-economic analysis of solar photovoltaic powered electrical energy storage (EES) system
    Khan, Salah Ud-Din
    Wazeer, Irfan
    Almutairi, Zeyad
    Alanazi, Meshari
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (09) : 6739 - 6753
  • [49] Techno-Economic Analysis of a Battery Energy Storage System with Combined Stationary and Mobile Applications
    Hayajneh, Hassan S.
    Bashetty, Srikanth
    Salim, Muath Naser Bani
    Zhang, Xuewei
    2018 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY (SUSTECH), 2018, : 159 - 164
  • [50] A techno-economic analysis on NaS battery energy storage system supporting peak shaving
    Liao, Qiangqiang
    Sun, Bo
    Liu, Yu
    Sun, Jun
    Zhou, Guoding
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (02) : 241 - 247