One-shot knowledge graph completion based on disentangled representation learning

被引:0
|
作者
Zhang, Youmin [1 ]
Sun, Lei [1 ]
Wang, Ye [1 ]
Liu, Qun [1 ]
Liu, Li [1 ]
机构
[1] Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing,400065, China
关键词
53;
D O I
10.1007/s00521-024-10236-9
中图分类号
学科分类号
摘要
One-shot knowledge graph completion (KGC) aims to infer unseen facts when only one support entity pair is available for a particular relationship. Prior studies learn reference representations from one support pair for matching query pairs. This strategy can be challenging, particularly when dealing with multiple relationships between identical support pairs, resulting in indistinguishable reference representations. To this end, we propose a disentangled representation learning framework for one-shot KGC. Specifically, to learn sufficient representations, we construct an entity encoder with a fine-grained attention mechanism to explicitly model the input and output neighbors. We adopt an orthogonal regularizer to promote the independence of learned factors in entity representation, enabling the matching processor with max pooling to adaptively identify the semantic roles associated with a particular relation. Subsequently, the one-shot KGC is accomplished by seamlessly integrating the aforementioned modules in an end-to-end learning manner. Extensive experiments on real-world datasets demonstrate the outperformance of the proposed framework.
引用
收藏
页码:20277 / 20293
页数:16
相关论文
共 50 条
  • [31] Local Contrast Learning for One-Shot Learning
    Zhang, Yang
    Yuan, Xinghai
    Luo, Ling
    Yang, Yulu
    Zhang, Shihao
    Xu, Chuanyun
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [32] Common Knowledge Based and One-Shot Learning Enabled Multi-Task Traffic Classification
    Sun, Haifeng
    Xiao, Yunming
    Wang, Jing
    Wang, Jingyu
    Qi, Qi
    Liao, Jianxin
    Liu, Xiulei
    IEEE ACCESS, 2019, 7 : 39485 - 39495
  • [33] Demystification of Few-shot and One-shot Learning
    Tyukin, Ivan Y.
    Gorban, Alexander N.
    Alkhudaydi, Muhammad H.
    Zhou, Qinghua
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [34] One-Shot Learning on Attributed Sequences
    Zhuang, Zhongfang
    Kong, Xiangnan
    Rundensteiner, Elke
    Arora, Aditya
    Zouaoui, Jihane
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 921 - 930
  • [35] Domain Adaption in One-Shot Learning
    Dong, Nanqing
    Xing, Eric P.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 : 573 - 588
  • [36] The role of one-shot learning in # TheDress
    Daoudi, Leila Drissi
    Doerig, Adrien
    Parkosadze, Khatuna
    Kunchulia, Marina
    Herzog, Michael H.
    JOURNAL OF VISION, 2017, 17 (03):
  • [37] Entity and Entity Type Composition Representation Learning for Knowledge Graph Completion
    Ni, Runyu
    Shibata, Hiroki
    Takama, Yasufumi
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (06) : 1151 - 1158
  • [38] Deep Knowledge Graph Representation Learning for Completion, Alignment, and Question Answering
    Chakrabarti, Soumen
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 3451 - 3454
  • [39] Concept-driven representation learning model for knowledge graph completion
    Xiang, Yan
    He, Hongguang
    Yu, Zhengtao
    Huang, Yuxin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [40] Personalized One-Shot Collaborative Learning
    Garin, Marie
    de Mathelin, Antoine
    Mougeot, Mathilde
    Vayatis, Nicolas
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 114 - 121