Tensorized and Compressed Multi-View Subspace Clustering via Structured Constraint

被引:0
|
作者
Chang, Wei [1 ,2 ]
Chen, Huimin [1 ,2 ]
Nie, Feiping [1 ,2 ]
Wang, Rong [2 ]
Li, Xuelong [2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Dictionaries; Tensors; Costs; Bipartite graph; Optimization; Clustering methods; Clustering algorithms; Compressed dictionary representation; Laplacian rank constraint; low-rank tensor learning; multi-view subspace learning; optimal bipartite graph;
D O I
10.1109/TPAMI.2024.3446537
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view learning has raised more and more attention in recent years. However, traditional approaches only focus on the difference while ignoring the consistency among views. It may make some views, with the situation of data abnormality or noise, ineffective in the progress of view learning. Besides, the current datasets have become high-dimensional and large-scale gradually. Therefore, this paper proposes a novel multi-view compressed subspace learning method via low-rank tensor constraint, which incorporates the clustering progress and multi-view learning into a unified framework. First, for each view, we take the partial samples to build a small-size dictionary, which can reduce the effect of both redundancy information and computation cost greatly. Then, to find the consistency and difference among views, we impose a low-rank tensor constraint on these representations and further design an auto-weighted mechanism to learn the optimal representation. Last, due to the non-square of the learned representation, the bipartite graph has been introduced, and under the structured constraint, the clustering results can be obtained directly from this graph without any post-processing. Extensive experiments on synthetic and real-world benchmark datasets demonstrate the efficacy and efficiency of our method, especially for the views with noise or outliers.
引用
收藏
页码:10434 / 10451
页数:18
相关论文
共 50 条
  • [21] Semi-Supervised Structured Subspace Learning for Multi-View Clustering
    Qin, Yalan
    Wu, Hanzhou
    Zhang, Xinpeng
    Feng, Guorui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1 - 14
  • [22] Multi-view clustering via pairwise sparse subspace representation
    Yin, Qiyue
    Wu, Shu
    He, Ran
    Wang, Liang
    NEUROCOMPUTING, 2015, 156 : 12 - 21
  • [23] Sequential multi-view subspace clustering
    Lei, Fangyuan
    Li, Qin
    Neural Networks, 2022, 155 : 475 - 486
  • [24] Multi-view Subspace Clustering via Joint Latent Representations
    Dong, Wenhua
    Wu, Xiao-jun
    Xu, Tianyang
    NEURAL PROCESSING LETTERS, 2022, 54 (03) : 1879 - 1901
  • [25] Multi-view subspace text clustering
    Fraj, Maha
    Hajkacem, Mohamed Aymen Ben
    Essoussi, Nadia
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 1583 - 1606
  • [26] Latent Multi-view Subspace Clustering
    Zhang, Changqing
    Hu, Qinghua
    Fu, Huazhu
    Zhu, Pengfei
    Cao, Xiaochun
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4333 - 4341
  • [27] Multi-view Subspace Clustering via Joint Latent Representations
    Wenhua Dong
    Xiao-jun Wu
    Tianyang Xu
    Neural Processing Letters, 2022, 54 : 1879 - 1901
  • [28] Multi-View MERA Subspace Clustering
    Long, Zhen
    Zhu, Ce
    Chen, Jie
    Li, Zihan
    Ren, Yazhou
    Liu, Yipeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3102 - 3112
  • [29] Adaptive Multi-View Subspace Clustering
    Tang Q.
    Zhang Y.
    He S.
    Zhou Z.
    Zhang, Yulong, 1600, Xi'an Jiaotong University (55): : 102 - 112
  • [30] Sketched multi-view subspace clustering
    Kadambari, Sai Kiran
    Chepuri, Sundeep Prabhakar
    SIGNAL PROCESSING, 2025, 234