Review of physics-informed machine-learning inversion of geophysical data

被引:0
|
作者
Schuster, Gerard T. [1 ]
Chen, Yuqing [2 ]
Feng, Shihang [3 ,4 ]
机构
[1] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT USA
[2] China Univ Geosci, Key Lab Intraplate Volcanoes & Earthquakes, Beijing, Peoples R China
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Viridien, Houston, TX 77072 USA
关键词
WAVE-FORM INVERSION; JOINT INVERSION; NEURAL-NETWORKS; MODELS;
D O I
10.1190/GEO2023-0615.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We review five types of physics-informed machine-learning (PIML) algorithms for inversion and modeling of geophysical data. Such algorithms use the combination of a data-driven machine-learning (ML) method and the equations of physics to model or invert geophysical data (or both). By incorporating the constraints of physics, PIML algorithms can effectively reduce the size of the solution space for ML models, enabling them to be trained on smaller data sets. This is especially advantageous in scenarios in which data availability may be limited or expensive to obtain. In this review, we restrict the physics to be that from the governing wave equation, either as a constraint that must be satisfied or by using numerical solutions of the wave equation for modeling and inversion. This approach ensures that the resulting models adhere to physical principles while leveraging the power of ML to analyze and interpret complex geophysical data. There are several potential benefits of PIML compared to standard numerical modeling or inversion of seismic data computed by, for example, finite-difference solutions to the wave equation. 1) Empirical tests suggest that PIML algorithms constrained by the physics of wave propagation can sometimes resist getting stuck in a local minima compared with standard full-waveform inversion (FWI). 2) After the weights of the neural network are found by training, then the forward and inverse operations by PIML can be more than several orders of magnitude more efficient than FWI. However, the computational cost for general training can be enormous. 3) If the ML inversion operator H-w is locally trained on a small portion of the recorded data d(obs), then there is sometimes no need for millions of training examples that aim for global generalization of H-w. The benefit is that the locally trained H-w can be used to economically invert the remaining test data d(test) for the true velocity m approximate to H(w)d(test), where d(test) can comprise more than 90% of the recorded data.
引用
收藏
页码:T337 / T356
页数:20
相关论文
共 50 条
  • [21] Predicting glass structure by physics-informed machine learning
    Bodker, Mikkel L.
    Bauchy, Mathieu
    Du, Tao
    Mauro, John C.
    Smedskjaer, Morten M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [22] Parsimony as the ultimate regularizer for physics-informed machine learning
    J. Nathan Kutz
    Steven L. Brunton
    Nonlinear Dynamics, 2022, 107 : 1801 - 1817
  • [23] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [24] Physics-Informed Machine Learning for Optical Modes in Composites
    Ghosh, Abantika
    Elhamod, Mohannad
    Bu, Jie
    Lee, Wei-Cheng
    Karpatne, Anuj
    Podolskiy, Viktor A.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):
  • [25] Physics-Informed Extreme Learning Machine Lyapunov Functions
    Zhou, Ruikun
    Fitzsimmons, Maxwell
    Meng, Yiming
    Liu, Jun
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1763 - 1768
  • [26] Physics-informed machine learning for moving load problems
    Kapoor, Taniya
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    XII INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2023, 2024, 2647
  • [27] Neural Oscillators for Generalization of Physics-Informed Machine Learning
    Kapoor, Taniya
    Chandra, Abhishek
    Tartakovsky, Daniel M.
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13059 - 13067
  • [28] Physics-informed machine learning for programmable photonic circuits
    Teofilovic, Isidora
    Zibar, Darko
    Da Ros, Francesco
    MACHINE LEARNING IN PHOTONICS, 2024, 13017
  • [29] Physics-Informed Machine Learning for metal additive manufacturing
    Farrag, Abdelrahman
    Yang, Yuxin
    Cao, Nieqing
    Won, Daehan
    Jin, Yu
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (01) : 171 - 185
  • [30] Predicting glass structure by physics-informed machine learning
    Mikkel L. Bødker
    Mathieu Bauchy
    Tao Du
    John C. Mauro
    Morten M. Smedskjaer
    npj Computational Materials, 8