Potential of lignin and cellulose as renewable materials for the synthesis of flame-retardant aerogel composites

被引:2
|
作者
Dungani, Rudi [1 ]
Hua, Lee Seng [2 ]
Chen, Lum Wei [3 ]
Nurani, Wasti [4 ]
Solihat, Nissa Nurfajrin [4 ]
Maulani, Rijanti Rahaju [1 ]
Dewi, Mustika [1 ]
Aditiawati, Pingkan [1 ]
Fitria [5 ]
Antov, Petar [6 ]
Yadav, Krishna Kumar [7 ,8 ]
Mishra, Richa [9 ]
Fatriasari, Widya [4 ]
机构
[1] Inst Teknol Bandung, Sch Life Sci & Technol, Jalan Ganesha 10, Bandung 40132, Indonesia
[2] Univ Teknol MARA UiTM Cawangan Pahang, Fac Appl Sci, Dept Wood Ind, Kampus Jengka, Bandar Tun Razak 26400, Pahang, Malaysia
[3] Univ Malaysia Kelantan, Fac Bioengn & Technol, Dept Bio & Nat Resource Technol, Jeli 17600, Kelantan, Malaysia
[4] Natl Res & Innovat Agcy BRIN, Res Ctr Biomass & Bioprod, JI Raya Bogor KM 46, Cibinong 16911, Indonesia
[5] Washington State Univ, Bioprod Sci & Engn Lab, Richland, WA 99354 USA
[6] Univ Forestry, Fac Forest Ind, Sofia 1797, Bulgaria
[7] Parul Univ, Parul Inst Appl Sci, Dept Environm Sci, Vadodara 391760, Gujarat, India
[8] Al Ayen Univ, Sci Res Ctr, Environm & Atmospher Sci Res Grp, Nasiriyah 64001, Thi Qar, Iraq
[9] Parul Univ, Parul Inst Engn & Technol PIET, Dept Comp Engn, Ta Waghodia, Vadodara 391760, Gujarat, India
来源
关键词
Flame-retardant aerogel composite; Lignin-based aerogel; Cellulose-based aerogel; Lignin-based flame retardant; FRAC; SILICA AEROGEL; THERMAL-CONDUCTIVITY; ORGANIC AEROGELS; CARBON AEROGELS; FABRICATION; FILMS; NANOCELLULOSE; RESORCINOL; FOAMS; WASTE;
D O I
10.1016/j.mtcomm.2024.110501
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aerogels are ultraporous solid materials characterized by numerous distinctive characteristics, such as an ultrahigh specific surface area, ultralow bulk density, ultralow modulus, extremely low thermal conductivity, extremely low sonic velocity or sound speed, extremely low refractive index, and extremely low dielectric constant. Due to these tunable properties, aerogels are regarded as versatile functional materials that have the potential to be used in various industries as flame retardants, including in oil and gas, building and construction, transportation, and electronics. At present, the dominant component used to synthesize flame-retardant aerogels is silica, the abundance and extraction of which are unsustainable. On the other hand, lignocellulosic biomass is the most plentiful renewable resource on the planet (making it comparable to the abundance of silica), can be obtained at low cost (i.e., derived from agricultural and forestry residue), and can be used to create aerogel frameworks. In addition, lignin can serve as a relatively nontoxic fire-retardant agent. The aim of this research work was to describe the present and anticipated market landscape of flame-retardant aerogel composites (FRACs), summarize the recent progress in the development of lignin- and cellulose-based FRAC systems, and identify the existing challenges to their wider industrial manufacturing and application.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Flame-retardant properties and mechanism of LGF/PBT/DOPO-HQ-conjugated flame-retardant composites
    Sun, Junzhuo
    Zhang, Daohai
    Shang, Xiaoyu
    Tan, Fang
    Bao, Dongmei
    Qin, Shuhao
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [42] Tensile properties of polypropylene flame-retardant composites
    Liang, J. Z.
    POLYMER BULLETIN, 2012, 68 (03) : 803 - 813
  • [43] PHENOL RESIN COMPOSITES - VISCOPLASTIC AND FLAME-RETARDANT
    BOTTCHER, A
    KUNSTSTOFFE-PLAST EUROPE, 1995, 85 (08): : 1142 - 1144
  • [44] Sustainable flame-retardant polyurethanes using renewable resources
    Bhoyate, Sanket
    Ionescu, M.
    Kahol, P. K.
    Gupta, Ram K.
    INDUSTRIAL CROPS AND PRODUCTS, 2018, 123 : 480 - 488
  • [45] Tensile properties of polypropylene flame-retardant composites
    J. Z. Liang
    Polymer Bulletin, 2012, 68 : 803 - 813
  • [46] Surface modification of sisal fiber cellulose microcrystallites by a renewable flame-retardant CH/PA coating
    College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
    Cailiao Yanjiu Xuebao, 2 (121-125):
  • [47] Flexible, transparent, flame-retardant cellulose/silica-aluminum composite aerogel films for thermal management
    Ding, Wen
    Hu, Ziyi
    Zhong, Ya
    Wu, Qing
    Sun, Jing
    Zhu, Xiaofei
    Cui, Sheng
    Shen, Xiaodong
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2025, 652
  • [48] Aromatic boronic acid flame-retardant polymer additives: Synthesis and flame-retardant testing.
    Morgan, AB
    Jurs, JL
    Tour, JM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U406 - U407
  • [49] The Flame-Retardant Mechanisms and Preparation of Polymer Composites and Their Potential Application in Construction Engineering
    Shen, Jingjing
    Liang, Jianwei
    Lin, Xinfeng
    Lin, Hongjian
    Yu, Jing
    Wang, Shifang
    POLYMERS, 2022, 14 (01)
  • [50] FLAME-RETARDANT FINISHING OF POLYESTER-CELLULOSE BLENDS
    TESORO, GC
    RIVLIN, J
    MOORE, DR
    INDUSTRIAL & ENGINEERING CHEMISTRY PRODUCT RESEARCH AND DEVELOPMENT, 1972, 11 (02): : 164 - &